[1]王春举, 郭斌, 单德彬, 等. 高频/超声振动辅助微成形技术研究进展与展望[J]. 精密成形工程, 2015,(3): 7-16.Wang C J, Guo B, Shan D B, et al. Research progress and outlook of high-frequency/ultrasonic vibration assisted microforming [J]. Journal of Netshape Forming Engineering, 2015,(3): 7-16. [2]程涛, 刘艳雄, 华林. 超声波振动辅助精冲成形工艺研究[J]. 锻压技术, 2016, 41(4):25-30.Cheng T, Liu Y X, Hua L. Research on the technology of ultrasonic vibration assisted fine blanking process[J]. Forging & Stamping Technology, 2016, 41(4): 25-30. [3]吴晓, 李建军, 郑志镇, 等. 振动场作用下金属塑性成形机理的研究和应用进展[J]. 塑性工程学报, 2015, 22(4): 1-7.Wu X, Li J J, Zheng Z Z, et al. Research and application progress of metal plastic forming mechanism under vibration field [J]. Journal of Plasticity Engineering, 2015, 22(4): 1-7. [4]Blaha F, Langenecker B. Elongation of zinc monocrystals under ultrasonic action [J]. Die Naturwissenschaften, 1955, 42(20): 556. [5]Liu Y, Suslov S, Han Q, et al. Microstructure of the pure copper produced by upsetting with ultrasonic vibration[J]. Materials Letters, 2012, 67(1): 52-55. [6]Hung J C, Lin C C. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting [J]. Materials & Design, 2013, 45: 412-420. [7]杨枫,申昱,曹常印,等. 基于超声振动的纯钛TA1板材的成形性能[J]. 塑性工程学报, 2014,21(4):42-46.Yang F, Shen Y, Cao C Y, et al. Research on forming performance of TA1 subjected to ultrasonic vibration[J]. Journal of Plasticity Engineering, 2014, 21(4):42-46. [8]Wang C J, Liu Y, Guo B, et al. Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling [J]. Materials & Design, 2016, 112: 246-253. [9]路腾腾, 申昱, 于沪平, 等. 超声振动对纯钛TA1微圆柱体压缩过程的影响[J]. 塑性工程学报, 2016, 23(6): 14-18.Lu T T, Shen Y, Yu H P, et al. Influence of ultrasonic vibration on pure titanium TA1 micro cylinder compression [J]. Journal of Plasticity Engineering, 2016, 23(6): 14-18. [10]孟德安, 赵升吨, 李永峄, 等. 低频振动式塑性加工的关键技术探讨[J]. 塑性工程学报, 2014, 21(4): 7-13.Meng D A, Zhao S D, Li Y Y, et al. Key technology of plastic forming with low frequency vibration [J]. Journal of Plasticity Engineering, 2014, 21(4): 7-13. [11]张责成, 韩中, 李建平, 等. 伺服压力机主要加工曲线模式及优点的研究[J]. 锻压技术, 2012, 37(5): 87-94.Zhang Z C, Han Z, Li J P, et al. Research on servo press primary processing curve mode and advantages [J]. Forging & Stamping Technology, 2012, 37(5): 87-94. [12]李金阳, 郑志镇, 吴晓, 等. Zr55块体非晶合金在低频振动场下的微成形能力[J]. 塑性工程学报, 2015, 22(5): 118-124.Li J Y, Zheng Z Z, Wu X, et al. A study on micro-forming ability of Zr55 bulk metallic glass under low frequency vibrating field [J]. Journal of Plasticity Engineering, 2015, 22(5): 118-124. [13]Ly R, Giraud-Audine C, Abba G, et al. Experimentally valided approach for the simulation of the forging process using mechanical vibration [J]. International Journal of Material Forming, 2009, 2(1): 133-136. [14]刘艳雄. 超声波辅助大塑性变形细化材料晶粒研究[D]. 武汉:武汉理工大学, 2012.Liu Y X. Ultrasonic Vibration Assisted Server Plastic Deformation to Refine the Material Grain [D]. Wuhan: Wuhan University of Technology, 2012. [15]郭伟国. 应力波基础简明教程[M]. 西安:西北工业大学出版社, 2007.Guo W G. Basic Tutorial of Stress Wave [M]. Xi′an: Northwestern Polytechnic University Press, 2007. [16]樊百林, 黄钢汉. 紫铜热塑性变形的研究[J]. 塑性工程学报, 2000, 7(3):37-39.Fan B L, Huang G H. Study of red copper at hot plasticity deformation[J]. Journal of Plasticity Engineering, 2000, 7(3):37-39. [17]Wang H, Jing H, Zhao L, et al. Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation [J]. Materials Science & Engineering A, 2017, 690:16-31. [18]Blanckenhagen B V, Gumbsch P, Arzt E. Dislocation sources and the flow stress of polycrystalline thin metal films [J]. Philosophical Magazine Letters, 2003, 83(1):1-8. [19]李周兵, 沈健, 闫亮明, 等. 应变速率对7055铝合金显微组织和力学性能的影响[J]. 稀有金属, 2010,34(5): 643-647.Li Z B, Shen J, Yan L M, et al. Influence of hot process strain rate on microstructures and tensile properties of 7055 aluminum alloy [J]. Chinese Journal of Rare Metals, 2010, 34(5): 643-647.
|