网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
低频振动模式下紫铜压缩变形行为及尺寸效应
英文标题:Compression deformation behavior and size effect of copper under low-frequency vibration
作者:李盼 王新云 张茂 邓磊 金俊松 夏巨谌 
单位:华中科技大学 
关键词:低频振动 压缩变形 T2紫铜 尺寸效应 应力叠加 晶粒细化 
分类号:TG311
出版年,卷(期):页码:2017,42(8):140-145
摘要:

通过改变低频振动加载条件,研究了振幅(0.01,0.05和0.1 mm)、频率(10,20和30 Hz)、进给速率(0.01,0.05和0.1 mm·s-1)和试样尺寸(Ф1,Ф2和Ф3 mm)对T2紫铜室温压缩变形行为的影响。实验结果表明,振幅对紫铜压缩变形过程的影响最为显著,随着振幅增加,成形载荷呈现较大幅度的降低;不同尺寸试样的实验结果表明,低频振动加载模式下存在明显的尺寸效应,随着试样尺寸减小,成形载荷降幅增大,晶粒尺寸减小。分析认为,振动条件下的变形为动态加载变形,应力的叠加使得内应力提高,并导致所需成形载荷降低。大振幅和小尺寸条件下,实际应变速率更大,能够产生更强的应力叠加,造成成形载荷降幅较大。

The influences of amplitude(0.01,0.05 and 0.1 mm), frequency (10, 20 and 30 Hz), feeding rate (0.01, 0.05 and 0.1 mm·s-1) and specimen size (Ф1,Ф2 and Ф3 mm) on the room-temperature compression deformation behavior of copper T2 were experimentally investigated by changing low-frequency vibration loading. The results reveal that the vibration amplitude plays the most significant role in the compression deformation of copper, and the forming load is effectively reduced with the increase of vibration amplitude. It also shows strong evidence of size effects during low-frequency vibration loading by experiment of different specimen sizes. The smaller the sample size is, the greater the forming load reduces and the smaller the grain size is. It is concluded that the deformation under vibration condition is dynamic loading, and the superposition of stress leads to the increase of internal stress and the reduction of required forming load. Under the condition of large amplitude or small size, the actual strain rate becomes greater, which enhances the superposition of stress and reduces forming load greatly.

基金项目:
国家自然科学基金资助项目(51175202);湖北省科技支撑计划项目(2015BAA019);深圳市基础研究计划项目(201605313001169)
作者简介:
李盼(1993-),女,硕士研究生 邓磊(1982-),男,博士,讲师
参考文献:


[1]王春举, 郭斌, 单德彬, 等. 高频/超声振动辅助微成形技术研究进展与展望[J]. 精密成形工程, 2015,(3): 7-16.Wang C J, Guo B, Shan D B, et al. Research progress and outlook of high-frequency/ultrasonic vibration assisted microforming [J]. Journal of Netshape Forming Engineering, 2015,(3): 7-16.
[2]程涛, 刘艳雄, 华林. 超声波振动辅助精冲成形工艺研究[J]. 锻压技术, 2016, 41(4):25-30.Cheng T, Liu Y X, Hua L. Research on the technology of ultrasonic vibration assisted fine blanking process[J]. Forging & Stamping Technology, 2016, 41(4): 25-30.
[3]吴晓, 李建军, 郑志镇, 等. 振动场作用下金属塑性成形机理的研究和应用进展[J]. 塑性工程学报, 2015, 22(4): 1-7.Wu X, Li J J, Zheng Z Z, et al. Research and application progress of metal plastic forming mechanism under vibration field [J]. Journal of Plasticity Engineering, 2015, 22(4): 1-7.
[4]Blaha F, Langenecker B. Elongation of zinc monocrystals under ultrasonic action [J]. Die Naturwissenschaften, 1955, 42(20): 556.
[5]Liu Y, Suslov S, Han Q, et al. Microstructure of the pure copper produced by upsetting with ultrasonic vibration[J]. Materials Letters, 2012, 67(1): 52-55.
[6]Hung J C, Lin C C. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting [J]. Materials & Design, 2013, 45: 412-420.
[7]杨枫,申昱,曹常印,等. 基于超声振动的纯钛TA1板材的成形性能[J]. 塑性工程学报, 2014,21(4):42-46.Yang F, Shen Y, Cao C Y, et al. Research on forming performance of TA1 subjected to ultrasonic vibration[J]. Journal of Plasticity Engineering, 2014, 21(4):42-46.
[8]Wang C J, Liu Y, Guo B, et al. Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling [J]. Materials & Design, 2016, 112: 246-253.
[9]路腾腾, 申昱, 于沪平, 等. 超声振动对纯钛TA1微圆柱体压缩过程的影响[J]. 塑性工程学报, 2016, 23(6): 14-18.Lu T T, Shen Y, Yu H P, et al. Influence of ultrasonic vibration on pure titanium TA1 micro cylinder compression [J]. Journal of Plasticity Engineering, 2016, 23(6): 14-18.
[10]孟德安, 赵升吨, 李永峄, 等. 低频振动式塑性加工的关键技术探讨[J]. 塑性工程学报, 2014, 21(4): 7-13.Meng D A, Zhao S D, Li Y Y, et al. Key technology of plastic forming with low frequency vibration [J]. Journal of Plasticity Engineering, 2014, 21(4): 7-13.
[11]张责成, 韩中, 李建平, 等. 伺服压力机主要加工曲线模式及优点的研究[J]. 锻压技术, 2012, 37(5): 87-94.Zhang Z C, Han Z, Li J P, et al. Research on servo press primary processing curve mode and advantages [J]. Forging & Stamping Technology, 2012, 37(5): 87-94.
[12]李金阳, 郑志镇, 吴晓, 等. Zr55块体非晶合金在低频振动场下的微成形能力[J]. 塑性工程学报, 2015, 22(5): 118-124.Li J Y, Zheng Z Z, Wu X, et al. A study on micro-forming ability of Zr55 bulk metallic glass under low frequency vibrating field [J]. Journal of Plasticity Engineering, 2015, 22(5): 118-124.
[13]Ly R, Giraud-Audine C, Abba G, et al. Experimentally valided approach for the simulation of the forging process using mechanical vibration [J]. International Journal of Material Forming, 2009, 2(1): 133-136.
[14]刘艳雄. 超声波辅助大塑性变形细化材料晶粒研究[D]. 武汉:武汉理工大学, 2012.Liu Y X. Ultrasonic Vibration Assisted Server Plastic Deformation to Refine the Material Grain [D]. Wuhan: Wuhan University of Technology, 2012.
[15]郭伟国. 应力波基础简明教程[M]. 西安:西北工业大学出版社, 2007.Guo W G. Basic Tutorial of Stress Wave [M]. Xi′an: Northwestern Polytechnic University Press, 2007.
[16]樊百林, 黄钢汉. 紫铜热塑性变形的研究[J]. 塑性工程学报, 2000, 7(3):37-39.Fan B L, Huang G H. Study of red copper at hot plasticity deformation[J]. Journal of Plasticity Engineering, 2000, 7(3):37-39.
[17]Wang H, Jing H, Zhao L, et al. Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation [J]. Materials Science & Engineering A, 2017, 690:16-31.
[18]Blanckenhagen B V, Gumbsch P, Arzt E. Dislocation sources and the flow stress of polycrystalline thin metal films [J]. Philosophical Magazine Letters, 2003, 83(1):1-8.
[19]李周兵, 沈健, 闫亮明, 等. 应变速率对7055铝合金显微组织和力学性能的影响[J]. 稀有金属, 2010,34(5): 643-647.Li Z B, Shen J, Yan L M, et al. Influence of hot process strain rate on microstructures and tensile properties of 7055 aluminum alloy [J]. Chinese Journal of Rare Metals, 2010, 34(5): 643-647.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9