[1]戴欣平,倪昀. 基于BP神经网络的汽车车身覆盖件回弹预测[J]. 热加工工艺,2012,41(9):100-103.
Dai X P, Ni Y. Prediction of springback of automobile body covering based on BP neural network[J]. Hot Working Technology, 2012,41(9):100-103.
[2]王晓莉,穆瑞,张咏琴. 基于BP神经网络的薄板成形回弹仿真预测[J]. 锻压技术,2016,41(6):146-149.
Wang X L, Mu R, Zhang Y Q. Numerical prediction of springback in sheet metal forming based on BP neural network[J]. Forging & Stamping Technology, 2016,41(6):146-149.
[3]刘海燕,金霞. 板料成形的回弹预测方法研究[J]. 机械制造与自动化,2008,37(6):40-44.
Liu H Y, Jin X. Springback prediction method research of sheet metal forming[J]. Machine Building & Automation, 2008,37(6):40-44.
[4]Hatem Mrad, Mohamed Bouazara, Gholamreza Aryanpour. A reliability study of springback on the sheet metal forming process under probabilistic variation of prestrain and blank holder force[J]. Acta Mechanica Sinica,2013,29(4):557-566.
[5]Teng F, Zhang W, Liang J, et al. Springback prediction and optimization of variable stretch force trajectory in three-dimensional stretch bending process[J]. Chinese Journal of Mechanical Engineering, 2015, 28(6):1132-1140.
[6]马国英,黄彬兵,苏春建,等. 汽车翼子板拉深成形模拟及工艺参数优化[J]. 锻压技术,2015,40(3):21-24.
Ma G Y, Huang B B, Su C J, et al. Simulation and parameters optimization of deep drawing for automobile fender[J]. Forging & Stamping Technology, 2015, 40(3): 21-24.
[7]吴超,严勇,胡志力. 基于BP神经网络的管材数控弯曲多参数优化方法研究[J]. 锻压技术,2015,40(6):131-137.
Wu C, Yan Y, Hu Z L. Research on optimization method of multiparameter in NC tube bending based on BP neural network[J]. Forging & Stamping Technology, 2015,40(6):131-137.
[8]陈靖芯,蔡兰,陆国民. 基于BP神经网络的车身钣金件冲压成形回弹预测[J]. 农业机械学报,2005,36(7):135-139.
Chen J X, Cai L, Lu G M. Springback prediction in the autobody panel stamping process based on the BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005,36(7):135-139.
|