网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于电磁压制的Ag-Cu-Ge钎料合金成形工艺
英文标题:Forming process of brazing alloy Ag-Cu-Ge based on electromagnetic compaction
作者:许兰娇 黄尚宇 郑菲 雷雨 周梦成 刘俐 
单位:武汉理工大学 华中科技大学 
关键词:电磁粉末压制 Ag-Cu-Ge钎料合金 压制电压 烧结温度 钎焊性能 
分类号:TG391
出版年,卷(期):页码:2017,42(9):63-68
摘要:

针对Ag-Cu-Ge系钎料难以加工成薄片的难题,利用电磁粉末压制结合液相烧结的成形工艺制备了钎料薄片,探究了不同压制电压及烧结温度对钎料薄片致密度和组织结构的影响,选用优化工艺下的钎料薄片对铜板进行焊接实验。实验结果表明:压坯致密度随着压制电压的提高而显著提升,当压制电压为2800 V时,压坯致密度达到最大值88.62%,而电压升高到3000 V时,锗粉颗粒内部开始产生裂纹甚至破裂;250 ℃烧结温度下烧结体出现了弹性后效现象,当烧结温度升高到400 ℃时,烧结体致密度增长率达到最大值2.63%,若温度继续升高,烧结体晶粒则出现粗化现象;最终当焊接温度为600 ℃时,焊缝组织均匀,与母材形成了较好的冶金结合,表现出良好的焊接性能,说明了该成形工艺用于制备钎料薄片的可行性。

For the difficult in manufacturing brazing filler metal Ag-Cu-Ge into thin sheet, it was investigated that the influences of different pressing voltages and sintering temperatures on the density and microstructure of the brazing filler metal sheet produced by electromagnetic powder pressing combined with liquid phase sintering. Then, the welding experiments were carried out on copper plate by an optimized process. The results show that the compaction density increases with the increase of compaction voltage. When the pressing voltage is 2800 V, the billet density reaches the maximum value 88.62%, while at the voltage of 3000 V, cracks and even fractures develop in the internal of germanium powder particles. Then, the elastic after effect appears in sintered body at the sintering temperature of 250 ℃, and the density reaches the maximum value 2.63% at the sintering temperature of 400 ℃. As the temperature rises continually, the coarsening phenomenon appears in sintering body. When the welding temperature is up to 600 ℃, the weld structure is uniform with the base metal to form a good metallurgical combination to show good welding performance, and the forming process for the preparation of solder sheets is feasible.
 

基金项目:
国家自然科学基金资助项目(51475345);华中科技大学材料成形与模具技术国家重点实验室开放基金课题(P2015-01)
作者简介:
作者简介:许兰娇(1991-),女,硕士研究生 E-mail:xuljwhut@163.com 通讯作者: 黄尚宇 (1963-),男,硕士,教授 E-mail: huangshy@whut.edu.cn
参考文献:


[1]李红, Wolfgang Tillmann, 栗卓新,等. 高品质高可靠性钎料的技术发展及应用[J]. 焊接学报, 2014, 35(4):108-112.


Li H, Wolfgang Tillmann, Li Z X , et al. Development and application of high quality and high reliability brazing[J]. Transactions of the China Welding Institution, 2014, 35(4):108-112.



[2]Lai Z, Xue S, Lu F, et al. Effects of Ga and In on the properties of cadmium-free Ag-Cu-Zn filler metal[J]. China Welding, 2009, 18(4):33-38.



[3]樊江磊, 龙伟民, 王星星,等. 夹杂物对Ag-Cu-Zn钎料凝固组织和性能的影响[J]. 焊接学报, 2015, 36(5):1-4.


Fan J L, Long W M, Wang X X, et al. Effect of inclusions on solidification structure and properties of Ag - Cu - Zn solder[J]. Transactions of the China Welding Institution, 2015, 36(5):1-4.



[4]陈军君,傅岳鹏,田民波. 微电子封装材料的最新进展[J]. 半导体技术,2008,33(3):185-189.


Chen J J, Fu Y P, Tian M B. Recent development of micro electronic packaging[J]. Materials Semiconductor Technology, 2008,33(3):185-189.



[5]岳译新, 谭澄宇, 郑子樵,等. 新型Ag-Cu-Ge钎料的性能及钎焊界面特征[J]. 中国有色金属学报, 2006, 16(10):1793-1798.


Yue Y X, Tan C Y, Zheng Z Q, et al. Properties and interface microstructure of new type Ag-Cu-Ge solder[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(10):1793-1798.



[6]Zhai W, Hong Z Y, Mei C X, et al. Dynamic solidification mechanism of ternary Ag-Cu-Ge eutectic alloy under ultrasonic condition[J]. Science China Physics, Mechanics & Astronomy, 2013, 56(2):462-473.



[7]张利广, 许昆, 刘毅,等. 快速凝固Ag-Cu-Ge钎料薄带性能与钎焊界面特征[J]. 稀有金属材料与工程, 2016, 45(2):421-425.


Zhang L G, Xu K, Liu Y, et al. Properties and brazing interface characteristics of rapidly solidified Ag-Cu-Ge solder ribbons[J]. Rare Metal Materials and Engineering, 2016, 45 (2):421-425.



[8]甘卫平, 陈慧, 杨伏良. Ag-Cu-In-Sn钎料加工工艺的研究[J]. 材料导报, 2007, 21(3):156-158.


Gan W P, Chen H, Yang F L. Research on the processing technology of Ag-Cu-In-Sn solder[J]. Materials Review, 2007, 21(3):156-158.



[9]Tu K N, Zeng K. Reliability issues of Pb-free solder joints in electronic packaging technology[A]. Electronic Components and Technology Conference[C]. San Diego: IEEE Xplore, 2002.



[10]Grant N J. Recent trends and developments with rapidly solidified materials[J]. Metallurgical and Materials Transactions A, 1992, 23(4):1083-1093.



[11]孙伟, 黄尚宇, 孟正华,等. 低电压电磁压制PZT粉末致密度的试验研究[J]. 中国机械工程, 2006, 17(19):2063-2066.


Sun W, Huang S Y, Meng Z H, et al. Experimental research on the density of PZT powder by low-voltage electromagnetic compaction[J]. China Mechanical Engineering, 2006, 17(19):2063-2066.



[12]孟正华, 黄尚宇, 常宏,等. 线圈及集磁器结构对陶瓷粉末电磁压制的影响[J]. 锻压技术, 2006, 31(4):138-140.


Meng Z H, Huang S Y, Chang H, et al. Effects of coil and field shaper structure on electromagnetic compaction of ceramic powder[J]. Forging & Stamping Technology, 2006, 31(4):138-140.



[13]刘付春, 昌晶晶, 王伟,等. 温成形界面粉末润滑的摩擦特性与表面膜分析[J]. 锻压技术, 2016, 41(1):111-115.


Liu F C, Chang J J, Wang W, et al. Frictional characteristic and surface film analysis on powder lubrication of warm forming interface [J]. Forging & Stamping Technology, 2016, 41(1):111-115.



[14]林高安. 钨粉形貌与粒度分布对成形性和压坯强度的影响[J]. 粉末冶金材料科学与工程, 2009, 14(4):260-264.


Lin G A. Effect of morphology and particle size distribution of tungsten powder on compacting performance and green compact strength [J].Materials Science and Engineering of Powder Metallurgy, 2009, 14(4):260-264.



[15]曹子宇, 刘宇阳, 桂涛,等. Ag-B靶材热压制备及致密化过程研究[J]. 稀有金属, 2016, 40(10):1038-1044.


Cao Z Y, Liu Y Y, Gui T, et al. Preparation of Ag-B target by hot pressing and densification [J]. Chinese Journal of Rare Metals, 2016, 40(10):1038-1044.



[16]Akhmetova A M, Dinsdale A T, Khvan A V, et al. Experimental investigations of the Ag-Cu-Ge system[J]. Journal of Alloys & Compounds, 2015, 630 (5):84-93.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9