[1]李红, Wolfgang Tillmann, 栗卓新,等. 高品质高可靠性钎料的技术发展及应用[J]. 焊接学报, 2014, 35(4):108-112.
Li H, Wolfgang Tillmann, Li Z X , et al. Development and application of high quality and high reliability brazing[J]. Transactions of the China Welding Institution, 2014, 35(4):108-112.
[2]Lai Z, Xue S, Lu F, et al. Effects of Ga and In on the properties of cadmium-free Ag-Cu-Zn filler metal[J]. China Welding, 2009, 18(4):33-38.
[3]樊江磊, 龙伟民, 王星星,等. 夹杂物对Ag-Cu-Zn钎料凝固组织和性能的影响[J]. 焊接学报, 2015, 36(5):1-4.
Fan J L, Long W M, Wang X X, et al. Effect of inclusions on solidification structure and properties of Ag - Cu - Zn solder[J]. Transactions of the China Welding Institution, 2015, 36(5):1-4.
[4]陈军君,傅岳鹏,田民波. 微电子封装材料的最新进展[J]. 半导体技术,2008,33(3):185-189.
Chen J J, Fu Y P, Tian M B. Recent development of micro electronic packaging[J]. Materials Semiconductor Technology, 2008,33(3):185-189.
[5]岳译新, 谭澄宇, 郑子樵,等. 新型Ag-Cu-Ge钎料的性能及钎焊界面特征[J]. 中国有色金属学报, 2006, 16(10):1793-1798.
Yue Y X, Tan C Y, Zheng Z Q, et al. Properties and interface microstructure of new type Ag-Cu-Ge solder[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(10):1793-1798.
[6]Zhai W, Hong Z Y, Mei C X, et al. Dynamic solidification mechanism of ternary Ag-Cu-Ge eutectic alloy under ultrasonic condition[J]. Science China Physics, Mechanics & Astronomy, 2013, 56(2):462-473.
[7]张利广, 许昆, 刘毅,等. 快速凝固Ag-Cu-Ge钎料薄带性能与钎焊界面特征[J]. 稀有金属材料与工程, 2016, 45(2):421-425.
Zhang L G, Xu K, Liu Y, et al. Properties and brazing interface characteristics of rapidly solidified Ag-Cu-Ge solder ribbons[J]. Rare Metal Materials and Engineering, 2016, 45 (2):421-425.
[8]甘卫平, 陈慧, 杨伏良. Ag-Cu-In-Sn钎料加工工艺的研究[J]. 材料导报, 2007, 21(3):156-158.
Gan W P, Chen H, Yang F L. Research on the processing technology of Ag-Cu-In-Sn solder[J]. Materials Review, 2007, 21(3):156-158.
[9]Tu K N, Zeng K. Reliability issues of Pb-free solder joints in electronic packaging technology[A]. Electronic Components and Technology Conference[C]. San Diego: IEEE Xplore, 2002.
[10]Grant N J. Recent trends and developments with rapidly solidified materials[J]. Metallurgical and Materials Transactions A, 1992, 23(4):1083-1093.
[11]孙伟, 黄尚宇, 孟正华,等. 低电压电磁压制PZT粉末致密度的试验研究[J]. 中国机械工程, 2006, 17(19):2063-2066.
Sun W, Huang S Y, Meng Z H, et al. Experimental research on the density of PZT powder by low-voltage electromagnetic compaction[J]. China Mechanical Engineering, 2006, 17(19):2063-2066.
[12]孟正华, 黄尚宇, 常宏,等. 线圈及集磁器结构对陶瓷粉末电磁压制的影响[J]. 锻压技术, 2006, 31(4):138-140.
Meng Z H, Huang S Y, Chang H, et al. Effects of coil and field shaper structure on electromagnetic compaction of ceramic powder[J]. Forging & Stamping Technology, 2006, 31(4):138-140.
[13]刘付春, 昌晶晶, 王伟,等. 温成形界面粉末润滑的摩擦特性与表面膜分析[J]. 锻压技术, 2016, 41(1):111-115.
Liu F C, Chang J J, Wang W, et al. Frictional characteristic and surface film analysis on powder lubrication of warm forming interface [J]. Forging & Stamping Technology, 2016, 41(1):111-115.
[14]林高安. 钨粉形貌与粒度分布对成形性和压坯强度的影响[J]. 粉末冶金材料科学与工程, 2009, 14(4):260-264.
Lin G A. Effect of morphology and particle size distribution of tungsten powder on compacting performance and green compact strength [J].Materials Science and Engineering of Powder Metallurgy, 2009, 14(4):260-264.
[15]曹子宇, 刘宇阳, 桂涛,等. Ag-B靶材热压制备及致密化过程研究[J]. 稀有金属, 2016, 40(10):1038-1044.
Cao Z Y, Liu Y Y, Gui T, et al. Preparation of Ag-B target by hot pressing and densification [J]. Chinese Journal of Rare Metals, 2016, 40(10):1038-1044.
[16]Akhmetova A M, Dinsdale A T, Khvan A V, et al. Experimental investigations of the Ag-Cu-Ge system[J]. Journal of Alloys & Compounds, 2015, 630 (5):84-93.
|