网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
100 t锻造操作机夹钳旋转驱动液压系统设计
英文标题:Design on hydraulic clamp rotation driven system for 100 t forging manipulator
作者:李向阳 田富 闫周 刘远瞩 梁峰 
单位:沈阳航空航天大学 北方重工集团工程设计院 
关键词:锻造操作机 夹钳旋转 旋转定位 液压系统 元件选型 
分类号:TD451
出版年,卷(期):页码:2017,42(9):97-101
摘要:

锻造操作机夹钳旋转系统直接与钢锭接触,具有承受锻造载荷波动范围大、负载夹持扭矩大、旋转角位移控制精度高等特点,对夹钳旋转液压系统的合理设计及液压元件的恰当选型是提高锻造精度和锻造质量重要的途径和方法。基于100 t液压锻造操作机,依据设备工作性质,选定了液压系统的工作压力;通过对其机械结构及技术性能参数进行分析,确立了液压系统的设计方案,并在此基础上对液压原理图进行了详细设计;针对设备在不同工况下的工作特点及性能要求,通过关键参数的计算对主要液压元件进行了选型。设备使用结果显示,操作机夹钳旋转工作平稳,夹钳旋转定位精度达到±1°,旋转性能满足设计要求。

 

The clamp rotation system of forging manipulator is directly connected with steel ingot, which has the characteristics of large fluctuation range of bearing forging load, large torque of load holding, high control precision of rotation angular displacement and so on. Therefore, a reasonable design of clamp rotation hydraulic system and a proper selection of the hydraulic components are important to improve forging precision and forging quality. Based on 100 t hydraulic forging manipulator, the working pressure of hydraulic system was selected according to the working characters of the equipment. Then, the design scheme of hydraulic system was established by analyzing its mechanical structure and technical performance parameters, and the hydraulic schematic diagram was designed in detail. According to characteristics and performance requirements of the equipment under different working conditions, the main hydraulic components were selected by calculating key parameters. The results show that the operation of clamp rotation for the manipular is stable, and the clamp rotational positioning accuracy is ±1°. Thus, the rotation performance meets the design requirements.
 

基金项目:
2016年沈阳航空航天大学非博士学位青年成长基金课题资助计划(201603Y)
作者简介:
李向阳(1982-),男,硕士,实验师 E-mail:xiangyangcc@qq.com
参考文献:


[1]李许岗. 重载锻造操作机夹钳旋转系统的模糊控制研究[D].长沙:中南大学,2012.


Li X G. A Fuzzy Control Strategy for the Clamp Rotation System in a Heavy-load Forging Manipulator[D]. Changsha: Central South University, 2012.



[2]万胜狄,王运鹏,沈元彬,等.锻造机械化与自动化[M].北京: 机械工业出版社, 1983.


Wan S D, Wang Y P, Shen Y B, et al. Forging Mechanization and Automation[M]. Beijing: China Machine Press, 1983.



[3]李亚星.锻造操作机夹钳旋转液压控制系统的研发与分析[J].冶金设备, 2013,(S2):64-66.


Li Y X. Design and analysis of hydraulic control system[J]. Metallurgical Equipment, 2013,(S2):64-66.



[4]翟富刚.液压锻造操作机多学科协同仿真研究[D].秦皇岛:燕山大学,2012.


Zhai F G. Multidisciplinary Collaborative Simulation Research on Hydraulic Forging Manipulator[D].  Qinhuangdao: Yanshan University, 2012.



[5]成大先.机械设计手册:液压传动[M].北京:化学工业出版社,2004.


Cheng D X. Mechanical Design Manual: Hydraulic Transmission[M].Beijing: Chemical Industry Press,2004.



[6]田富,李向阳,李龙. 履带运输车行走驱动液压系统的设计[J].液压与气动,2014, (1):70-73.


Tian F, Li X Y, Li L. The design of hydraulic system of crawler driving parts[J]. Chinese Hydraulics & Pneumatics, 2014, (1):70-73.



[7]赵凯.锻造操作机缓冲过程仿真与顺应性评价[D].上海:上海交通大学,2009.


Zhao K. Simulation and Evaluation of the Compliance Process for Forging Manipilators[D]. Shanghai: Shanghai Jiao Tong University,2009.



[8]傅新,徐明,王伟,等.锻造操作机液压系统设计与仿真[J].机械工程学报,2010,46(11):49-54.


Fu X, Xu M, Wang W, et al. Hydraulic system design and simulation of the forging manipulator[J]. Journal of Mechanical Engineering, 2010,46(11):49-54.



[9]牛勇,张营杰,范玉林,等.锻造操作机液压控制系统设计[J].锻压装备与制造技术,2013,47(3):44-46.


Niu Y, Zhang Y J,Fan Y L, et al. Design of hydraulic control system for forging manipulator[J]. China Metalforming Equipment & Manufacturing Technology,2013,47(3):44-46.



[10]周斌,李阁强,江兵,等.20 t锻造操作机大车行走液压控制系统设计[J].液压与气动,2014,(6):92-94.


Zhou B, Li G Q, Jiang B, et al. Design of 20 t forging manipulator driving hydraulic control system[J]. Chinese Hydraulics & Pneumatics,2014,(6):92-94.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9