网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
模压形变对纯铜组织和性能的影响
英文标题:Effect of groove pressing on microstructure and properties of pure copper
作者:张秀妹 姜炳春 
单位:广东白云学院 广东科技学院 
关键词:模压形变法 大塑性变形 晶粒细化 显微组织 力学性能 
分类号:TG113;TG146
出版年,卷(期):页码:2017,42(9):146-149
摘要:

采用交叉模压形变法对纯铜进行不同道次的形变处理,研究交叉模压形变对纯铜显微组织和力学性能的影响。研究结果表明:交叉模压形变可以较有效细化纯铜晶粒尺寸,交叉模压10道次后,平均晶粒尺寸减小63%;材料在塑性变形初期(2道次)细化效果最明显,经相同道次交叉模压形变后,晶粒细化效果逐渐减低;交叉模压变形后纯铜试样的显微硬度和抗拉强度均得到显著提高,但是伸长率下降,硬度值和抗拉强度分别提高了96.4%和31.9%,伸长率由66.67%下降至12.25%。
 

Pure copper was deformed by the constrained groove pressing technology, and the influences of groove pressing on microstructure and mechanical properties of pure copper were studied. The results show that the constrained groove pressing is an effective way of refining the grain size of pure copper, and the average grain size of pure copper decreases by 63% after 10 passes. At the beginning of plastic deformation(2 passes),the effect of refining is most obvious, after the same passes of the constrained groove pressing, the effect of refining reduces gradually. However, the micro hardness and tensile strength of material increase significantly after the constrained groove pressing, and the elongation of copper decreases. Thus, the hardness and tensile strength of material increase nearly 96%and 32% respectively, and the elongation of copper decreases from 66.67% to 12.25%.

基金项目:
广东省青年创新人才类项目资助(2015KQNCX192);白云学院院级项目资助(BYKY20155)
作者简介:
作者简介:张秀妹(1988-),女,硕士,助教 E-mail:654874847@qq.com 通讯作者:姜炳春(1987-),男,硕士,讲师 E-mail:jiangbingchun_2008@163.com
参考文献:


[1]Dong H S, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grain refinement of aluminum[J]. Materials Science & Engineering A, 2002, 328(1):98-103.



[2]Dong H S, Kim B C, Kim Y S, et al. Microstructural evolution in a commercial low carbon steel by equal channel angular pressing[J]. Acta Materialia, 2000, 48(9):2247-2255.



[3]Krishnaiah A, Chakkingal U, Venugopal P. Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing[J]. Scripta Materialia, 2005, 52(12):1229-1233.



[4]Shirdel A, Khajeh A, Moshksar M M. Experimental and finite element investigation of semi-constrained groove pressing process[J]. Materials & Design, 2010, 31(2): 946-950.



[5]Morattab S, Ranjbar K, Reihanian M. On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing[J]. Materials Science and Engineering: A, 2011, 528(22): 6912-6918.



[6]彭开萍, 牟雪萍, 马玉声. 退火温度对模压形变后冷轧Cu-35Zn合金热稳定性的影响[J]. 材料热处理学报, 2014, 35(7):32-36.


Peng K P, Mou X P, Ma Y S. Effects of annealing temperature on thermal stability of  Cu-35Zn alloy processed  by constrained groove pressing and cold rolling[J]. Transactions of Materials and Heat Treatment, 2014, 35(7): 32-36.



[7]Peng K, Zhang Y, Shaw L L, et al. Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing[J]. Acta Materialia, 2009, 57(18):5543-5553.



[8]张秀妹, 彭开萍. 层错能对模压形变后材料组织与性能的影响[J]. 材料热处理学报, 2014, 35(10):75-81.


Zhang X M,Peng K P. Effects of stacking fault energy on microstructure and properties of materials deformed by constrained groove pressing[J]. Transactions of Materials and Heat Treatment, 2014, 35(10): 75-81.



[9]杨开怀, 邹泽昌, 傅枞春. 模压变形低碳钢板材的组织结构与力学性能[J]. 塑性工程学报, 2015, 22(3):54-57.


Yang K H, Zou Z C, Fu C C. Microstructures and mechanical properties of low carbon steel sheets processed by groove pressing[J]. Journal of Plasticity Engineering, 2015, 22(3):54-57.



[10]杨中伟, 晏桂珍, 王国彪,等. AP1000钢安全壳封头瓣片模压成形回弹模拟及补偿[J]. 锻压技术, 2015, 40(8):30-34.


Yang Z W, Yan G Z, Wang G B, et al. Springback simulation and compensation of molded forming for steel AP1000 containment vessel head petals[J]. Forging & Stamping Technology, 2015, 40(8):30-34.



[11]张秀妹. 不同层错能材料经模压形变后的晶粒细化和热稳定性[D]. 福州:福州大学,2014.


Zhang X M. Grain Refinement and Thermal Stability of Materials with Different Stacking Fault Energy Subjected to Constrained Groove Pressing[D]. Fuzhou: Fuzhou University,2014.



[12]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].



[13]彭开萍, 张秀妹, 林雪慧. 等效应变对Cu-38Zn合金交叉模压形变后组织和性能的影响[J]. 材料热处理学报, 2014, 35(2):199-204.


Peng K P, Zhang X M, Lin X H. Influence of equivalent strain on microstructure and hardness of Cu-38Zn alloy subjected to cross groove pressing[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 199-204.



[14]吴世丁, 安祥海, 韩卫忠, 等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46(3): 257-276.


Wu S D, An X H, Han W Z, et al. Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing[J]. Acta Metallurgica Sinica, 2010, 46(3): 257-276.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9