[1]Dong H S, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grain refinement of aluminum[J]. Materials Science & Engineering A, 2002, 328(1):98-103.
[2]Dong H S, Kim B C, Kim Y S, et al. Microstructural evolution in a commercial low carbon steel by equal channel angular pressing[J]. Acta Materialia, 2000, 48(9):2247-2255.
[3]Krishnaiah A, Chakkingal U, Venugopal P. Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing[J]. Scripta Materialia, 2005, 52(12):1229-1233.
[4]Shirdel A, Khajeh A, Moshksar M M. Experimental and finite element investigation of semi-constrained groove pressing process[J]. Materials & Design, 2010, 31(2): 946-950.
[5]Morattab S, Ranjbar K, Reihanian M. On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing[J]. Materials Science and Engineering: A, 2011, 528(22): 6912-6918.
[6]彭开萍, 牟雪萍, 马玉声. 退火温度对模压形变后冷轧Cu-35Zn合金热稳定性的影响[J]. 材料热处理学报, 2014, 35(7):32-36.
Peng K P, Mou X P, Ma Y S. Effects of annealing temperature on thermal stability of Cu-35Zn alloy processed by constrained groove pressing and cold rolling[J]. Transactions of Materials and Heat Treatment, 2014, 35(7): 32-36.
[7]Peng K, Zhang Y, Shaw L L, et al. Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing[J]. Acta Materialia, 2009, 57(18):5543-5553.
[8]张秀妹, 彭开萍. 层错能对模压形变后材料组织与性能的影响[J]. 材料热处理学报, 2014, 35(10):75-81.
Zhang X M,Peng K P. Effects of stacking fault energy on microstructure and properties of materials deformed by constrained groove pressing[J]. Transactions of Materials and Heat Treatment, 2014, 35(10): 75-81.
[9]杨开怀, 邹泽昌, 傅枞春. 模压变形低碳钢板材的组织结构与力学性能[J]. 塑性工程学报, 2015, 22(3):54-57.
Yang K H, Zou Z C, Fu C C. Microstructures and mechanical properties of low carbon steel sheets processed by groove pressing[J]. Journal of Plasticity Engineering, 2015, 22(3):54-57.
[10]杨中伟, 晏桂珍, 王国彪,等. AP1000钢安全壳封头瓣片模压成形回弹模拟及补偿[J]. 锻压技术, 2015, 40(8):30-34.
Yang Z W, Yan G Z, Wang G B, et al. Springback simulation and compensation of molded forming for steel AP1000 containment vessel head petals[J]. Forging & Stamping Technology, 2015, 40(8):30-34.
[11]张秀妹. 不同层错能材料经模压形变后的晶粒细化和热稳定性[D]. 福州:福州大学,2014.
Zhang X M. Grain Refinement and Thermal Stability of Materials with Different Stacking Fault Energy Subjected to Constrained Groove Pressing[D]. Fuzhou: Fuzhou University,2014.
[12]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[13]彭开萍, 张秀妹, 林雪慧. 等效应变对Cu-38Zn合金交叉模压形变后组织和性能的影响[J]. 材料热处理学报, 2014, 35(2):199-204.
Peng K P, Zhang X M, Lin X H. Influence of equivalent strain on microstructure and hardness of Cu-38Zn alloy subjected to cross groove pressing[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 199-204.
[14]吴世丁, 安祥海, 韩卫忠, 等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46(3): 257-276.
Wu S D, An X H, Han W Z, et al. Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing[J]. Acta Metallurgica Sinica, 2010, 46(3): 257-276.
|