网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
堆焊双金属冷镦粗过程中的变形行为
英文标题:Deformation behavior of surfacing welding bimetal in cold upsetting process
作者:惠有科 王华君 谢冰 陈稳 
单位:武汉理工大学 
关键词:堆焊双金属 等离子弧喷焊 冷镦粗 熔覆层 显微硬度 
分类号:TG316
出版年,卷(期):页码:2017,42(10):1-4
摘要:

借助冷镦粗实验研究堆焊双金属在大塑性变形下的变形行为,进而探索堆焊双金属坯料锻造成形的可行性。首先使用等离子弧喷焊技术制备双金属坯料,测定堆焊双金属熔覆层区域的显微硬度,认知堆焊双金属材料的界面特性;随后分析冷镦粗过程中堆焊双金属试样的变形与破坏方式。结果表明:堆焊双金属的显微硬度最薄弱区域出现在熔合线附近,熔覆层区域整体硬度远高于基体硬度;冷镦粗过程中,堆焊双金属基体区域率先发生塑性变形,熔覆层抵抗变形的能力高于基体;压缩到一定阶段,熔覆层底部区域也会发生塑性变形,熔覆层区域具有进行塑性变形的潜力。

The deformation behavior of surfacing welding bimetal under large plastic deformation was studied by the cold upsetting experiment, and the feasibility of forging surfacing welding bimetal was explored. Firstly, the bimetal billet was prepared by PTA spray welding, and the microhardness near the cladding layer of surfacing welding bimetal was measured to estimate the interfacial properties of surfacing welding bimetal. Then, the deformation and failure mode of surfacing welding bimetal in the cold upsetting process were investigated. The results show that the weakest microhardness region of surfacing welding bimetal appears near the fusion line, and the microhardness of cladding layer is much higher than that of substrate. Furthermore, in the cold upsetting process, the plastic deformation firstly occurs in the substrate region of surfacing welding bimetal, and the ability of cladding layer resisting deformation is higher than that of substrate. Therefore, when compression is up to a certain stage, the plastic deformation occurs at the bottom of the cladding layer, and the cladding layer region has the potential for plastic deformation.

基金项目:
国家自然科学基金资助项目(51475346)
作者简介:
作者简介:惠有科(1991-),男,硕士研究生,E-mail:youkeh@126.com;通讯作者:王华君(1970-),男,博士,副教授,E-mail:wanghuajunhb@163.com
参考文献:


[1]孔陈梅, 廖宏谊. 双金属复合管冷轧层间撕裂缺陷形成机理分析[J]. 锻压技术, 2016, 41(10):142-148.


Kong C M, Liao H Y. Analysis on the tearing principle between layers of the cold rolled bi-metal composite pipe[J]. Forging & Stamping Technology20164110):142-148.


[2]Politis D J, Lin J, Dean T. Investigation of material flow in forging bi-metal components[J]. Steel Research International, Special Edition, 2012,14:231-234.


[3]程可, 徐文斌, 陆晓峰. 20/316 L双金属复合管旋压成形数值模拟与分析[J]. 塑性工程学报, 201522(1):119-125.


Cheng K, Xu W B, Lu X F. Numerical simulation and analysis on spinning of 20/316L bimetallic clad pipe[J]. Journal of Plasticity Engineering2015221):119-125.


[4]Domblesky J, Kraft F, Druecke B, et al. Welded preforms for forging[J]. Journal of Materials Processing Technology, 2006, 171(1):141-149.


[5]张根成, 马叙, 张传友,. 冶金复合双金属无缝钢管斜轧扩径模拟[J]. 锻压技术, 2016, 41(3):48-53.


Zhang G C, Ma X, Zhang C Y, et al. Finite element simulation of cross expanding process for metallurgical composite bimetallic seamless steel pipes[J]. Forging & Stamping Technology2016413):48-53.


[6]Kazanowski P, Epler M E, Misiolek W Z. Bimetal rod extrusionprocess and product optimization[J]. Materials Science & Engineering A, 2004, 369(1-2):170-180.


[7]Zhao Y, Li Z, Dong J X. Observation of interface of two kinds of bimetal composite parts prepared by thixoforging[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1579-1584.


[8]Politis D J, Lin J G, Dean T A, et al. An investigation into the forging of bimetal gears[J]. Journal of Materials Processing Technology, 2014, 214(11):2248-2260.


[9]Misirli C, Cetintav I, Can Y. Experimental and FEM study of open die forging for bimetallic cylindrical parts produced using different materials[J]. International Journal of Modern Manufacturing Technologies, 2016,81):69-74.


[10]Essa K, Kacmarcik I, Hartley P, et al. Upsetting of bimetallic ring billets[J]. Journal of Materials Processing Technology, 2012, 212(4):817-824.


服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9