网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
ECAP和轧制工艺对H65黄铜β相形态和抗拉强度的影响
英文标题:Influences of ECAP and rolling process on β phase morphology and tensile strength of brass H65
作者:胡玉军 李峻薇 旷军平 
单位:江西师范高等专科学校 江西广信新材料股份有限公司 
关键词:ECAP变形 轧制 H65黄铜 β相 抗拉强度 
分类号:TG379;TG339;TG146.11
出版年,卷(期):页码:2017,42(10):101-105
摘要:

开展H65黄铜等通道转角挤压和轧制试验,研究ECAP变形和轧制变形前后,试样β相形态和抗拉强度的演变。结果表明:铸态时,β相分布无方向性,呈半连续网状和短棒状;经奇数道次变形后,β相平行间距变得紧密,并与水平约成30°分布,成长条状;经偶数道次变形后,β相平行间距稀疏,取向不定,呈粗的短棒状;经任何道次的ECAP变形再经轧制后,β相平行间距减小,几乎全部变成水平分布,且变得更加细长。H65黄铜在ECAP变形过程中,随着挤压道次的增加,抗拉强度值整体表现为上升趋势;同一试样在ECAP变形后再经轧制其抗拉强度值变大。β相取向与拉伸轴线夹角越小,β相平行间距越窄,H65黄铜的抗拉强度值越大。

The equal channel angular pressing(ECAP) and rolling tests for brass H65 were conducted, and the evolutions of β phase morphology and tensile strength of samples before and after ECAP and rolling deformations were studied. The results show that the β phase in cast state mainly presents as semi-continuous mesh and short rod without directions. After odd passes of ECAP deformation, the parallel space of β phase becomes closer, and the β phase is elongated long strip with the angle of 30° between β phase and extrusion direction. However, after even passes of ECAP deformation, the parallel space of β phase becomes sparse, and the β phase is deformed into short rod without directions. Furthermore, after any passes of ECAP deformation and rolling, the parallel space of β phase becomes small, and almost all the β phase becomes longer with the horizontal distribution. Thus, the tensile strength of brass H65 increases with the increasing of extrusion passes, and after ECAP deformation and rolling, the tensile strength of the same sample is improved greatly. At last, the smaller the angle between β phase direction and tensile axis is, the narrower the parallel space of β phase is, the bigger the tensile strength of brass H65 is.

基金项目:
江西省教育厅科学技术研究重点项目(GJJ151345)
作者简介:
作者简介:胡玉军(1989-),男,硕士,助教,E-mail:hyj0525@126.com
参考文献:

[1]王强松, 娄花芬, 马可定, . 铜及铜合金开发与应用[M]. 北京: 冶金工业出版社, 2013.


Wang Q S, Lou H F, Ma K D, et al. Development and Application of Copper and Copper Alloys[M]. Beijing: Metallurgical Industry Press, 2013.[2]高松松, 王进. 等通道角挤压对高纯铝力学性能的影响[J]. 锻压技术, 2015, 40(8):132-134, 139.


Gao S S, Wang J. Influence of equal channel angular extrusion on mechanical property of high purity aluminum[J]. Forging & Stamping Technology, 2015, 40(8):132-134, 139.


[3]Sadhasivam M, Pravin T, Raghuraman S. Determination of mechanical properties on aluminium with 5% copper powder metallurgy route compacts through equal channel angular pressing[J]. Applied Mechanics and Materials, 2015, 813-814:161-165.


[4]章震威, 王军丽, 张清龙, . 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1):116-125.


Zhang Z W, Wang J L, Zhang Q L, et al. Producing ultrafine-grained materials by equal channel angular pressing: A review[J]. Materials Review, 2017, 31(1): 116-125.


[5]赵鸿金, 胡玉军, 旷军平, . 等通道转角挤压第二相状态研究进展[J]. 热加工工艺, 2015, 44(11): 9-12.


Zhao H J, Hu Y J, Kuang J P, et al. Research and development of the second phase presence status during equal channel angular pressing [J]. Hot Working Technology, 2015, 44(11):9-12.


[6]张迎晖,彭凯,冯兴宇,等. H65黄铜ECAP变形规律和第二相取向演变的数值模拟[J].有色金属科学与工程,20178(1)105-111.


Zhang Y H, Peng K, Feng X Y, et al. Numerical simulation of deformation behavior and secondary phase orientation in H65 brass alloys ECAP [J]. Nonferrous Metals Science and Engineering, 2017, 8(1):105-111.


[7]马伟洲,杨西荣,赵西成,等. 工业纯钛板材室温ECAP变形组织性能研究[J]. 稀有金属,2015,39(12):1071-1075.


Ma W Z, Yang X R, Zhao X C, et al. Microstructure and properties of CP-Ti plates processed by ECAP at room temperature [J].Chinese Journal of Rare Metals, 2015,39(12):1071-1075.


[8]Stepanov N D, Kuznetsov A V, Salishchev G A, et al. Effect of cold rolling on structure and mechanical properties of copper subjected to different numbers of passes of ECAP[J]. Materials Science Forum, 2011, 667-669: 295-300.


[9]张静. 铜、铝及铜-银合金ECAP变形行为的研究[D]. 兰州:兰州理工大学, 2016.


Zhang J. Researches on Deformation Behavior in Equal Channel Angular Pressing of Copper, Aluminum and Cu-Ag Alloy [D]. Lanzhou: Lanzhou University of Technology, 2016.


[10]Stepanov N D, Kuznetsov A V, Salishchev G A, et al. Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes[J]. Materials Science and Engineering: A, 2012,554(5):105-115.


[11]Wei W, Wang F, Wei K X, et al. Microstructure and properties of Cu-5.7%Cr in situ fibrous composite produced by equal-channel angular pressing and cold rolling[J]. Materials Science Forum, 2010, 667-669:541-546.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9