网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
DP工艺GH4169合金新型高温本构模型及组织定量研究
英文标题:Research on new high temperature constitutive model and quantitative microstructure of delta-processed GH4169 alloy
作者:司家勇  陈龙  廖晓航  李志 
单位:中南林业科技大学 
关键词:GH4169合金 DP工艺 本构模型 动态再结晶 δ相 
分类号:TG113.2
出版年,卷(期):页码:2017,42(10):180-188
摘要:

通过高温热压缩试验,得到经DP工艺处理的GH4169合金在变形温度为900~1060 ℃、应变速率为0.001~0.5 s-1、压缩量为70%条件下的真应力-真应变曲线,依据流变曲线特征,界定出加工硬化-动态回复和动态流变软化两个阶段,建立了相应的新型高温流变本构模型,同时观察了变形显微组织,进行了定量金相统计分析。结果表明:GH4169合金高温压缩显微组织中的动态再结晶晶粒尺寸随变形温度的升高或应变速率的降低而逐渐增大;δ相含量逐渐减少,在1060 ℃时基本消失。通过引入标准统计参数——相关系数和平均相对误差绝对值,表明预测值和实际试验数值吻合度较高,所建立的本构方程可以用于准确预测经DP工艺处理的GH4169合金热成形过程中的应力值和热成形工艺优化。

The true stress-true strain curves of delta-processed GH4169 alloy with the deformation temperature of 900-1060 ℃, the strain rate of 0.001-0.5 s-1 and the compression amount of 70% were obtained by the high temperature hot compression tests. Then, the new high temperature constitutive models were established according to the characteristics of rheological curve to define two stages of the work hardening-dynamic recovery and dynamic rheological softening. Furthermore, the deformation microstructure was observed, and the quantitative metallographic analysis was carried out. The results show that the size of dynamic recrystallized grain increases gradually with the increasing of deformation temperature and the decreasing of strain rate. However, the content of δ phase gradually drops and almost disappears at 1060 ℃. Thus, the predicted values and actual test data are highly matched by introducing the standard statistical parameters of the correlation coefficient and the absolute value of average relative error, and the stress values of the delta-processed GH4169 alloy and optimized parameters in the hot forming process are accurately predicted by the new developed constitutive models.

基金项目:
湖南省教育厅重点项目(16A220);湖南省自然科学基金面上项目(2017JJ2403);湖南省高校科技创新团队支持计划(201485)
作者简介:
作者简介:司家勇 (1978-),男,博士,副教授,E-mail:sjy98106@163.com
参考文献:

[1]Kennedy R L. Allvac 718PlusTM, superalloy for the next forty years[A]. Loria E A. Sixth International Symposium on Superalloys 718, 625, 706 and Derivatives[C]. Pennsylvania: TMS, 2005.


[2]郭建亭. 高温合金材料学[M]. 北京:科学出版社,2010.


Guo J T. Materials Science and Engineering for Superalloys[M]. Beijing: Science Press, 2010.


[3]张方,王林岐.国内外GH4169棒材质量稳定性分析[J]. 锻压技术,2016, 41(9): 111-120.


Zhang F, Wang L Q. Analysis on quality stability of alloy GH4169 bars at home and abroad [J]. Forging & Stamping Technology, 2016, 41 (9): 111-120.


[4]Ruiz C, Obabueki A, Gillespie K. Evaluation of the microstructure and mechanical properties of delta processed alloy 718[A]. Antolovich S D. Seventh International Symposium on Superalloys[C]. Pennsylvania: TMS, 1992.


[5]Dix A W, Hyzak J M, Singh R P. Application of ultra fine grain alloy 718 forging billet[A]. Antolovich S D. Superalloys[C]. Warrendale, PA: TMS, 1992.


[6]Krueger D D. The development of direct age 718 for gas turbine aging disk applications[A]. Loria E A. Superalloy 718-Metallurgy and Applications[C]. Warrendale, PA: TMS,1989.


[7]Connolley T, Reed P A S, Starink M J. Short crack initiation and growth at 600 in notched specimens of inconel 718[J]. Materials Science and Engineering: A, 2003, 340 (1-2):139-154.


[8]Lu H J, Jia X C, Zhang K F, et al. Fine-grained pretreatment process and superplasticity for inconel 718 superalloy[J]. Materials Science and Engineering A, 2002, 326(2): 382-385.


[9]李树祺,庄景云, 谢锡善,. GH169合金显微组织对合金裂纹扩展速率的影响[J].材料工程,1998, (5):26-27.


Li S Q, Zhuang J Y, Xie X S, et al. Effcet of microstructutes on crack propagation rate of GH167 alloy[J].Journal of Materials Engineering, 1998, (5):26-27.


[10]Pieraggi B, Uginet J F. Fatigue and creep properties in relation with alloy 718 microstructure[A]. Loria E A. Superalloys 718,625,706 and Various Derivatives[C]. Warrendale, PA: TMS, 1994.


[11]Li S Q, Zhuang J Y, Yang J Y, et al. The effect of δ phase on crack propagation under creep and fatigue conditions in alloy 718[A].  Loria E A. Superalloys 718,625,706 and Various Derivatives[C].Warrendale, PA:TMS,1994.


[12]李志强, 张宁, 王宝雨, . GH4169合金热变形微观组织演变模型[J]. 塑性工程学报,2014,21(5):100-104.


Li Z Q, Zhang N, Wang B Y, et al. Microstructure model of GH4169 alloy during hot forming[J]. Journal of Plasticity Engineering, 2014, 21(5): 100-104.


[13]王博,易丹青,丁学峰,. FGH4169合金的高温变形行为[J].中南大学学报:自然科学版, 2013,44(11):4408-4414.


Wang B, Yi D Q, Ding X F, et al. Hot deformation behavior of FGH4169 superalloy[J]. Journal of Central South University: Science and Technology, 2013, 44(11):4408-4414.


[14]张付军,周晚林,陈文豪. GH4169合金不同变形条件下的流变应力研究[J]. 电气与自动化,2014,43(5):203-205.


Zhang F J, Zhou W L, Chen W H. Flow stress of GH4169 alloy under different hot deformation conditions[J]. Machine Building & Automation,2014,43(5):203-205.


[15]Weis M J, Mataya M C, Thompson S W. The hot deformation behavior of an as-cast alloy 718 ingot [A]. Loria E A. Superalloys 718[C]. Warrendale, PA:TMS, 1989.


[16]Zhou L X, Baker T N. Effects of strain rate and temperature on deformation behaviour of IN 718 during high temperature deformation [J]. Materials Science & Engineering A, 1994, 177(1-2): 1-9.


[17]Zhang J M, Gao Z Y, Zhuang J Y, et al. Mathematical modeling of the hotdeformation behavior of superalloy IN718[J]. Metallurgical and Materials Transactions A, 1999, 30(10): 2701-2713.


[18]牛济泰. 材料和热加工领域的物理模拟技术[M]. 北京: 国防工业出版社, 1999.


Niu J T. Physical Simulation in Materials and Hot-working[M]. Beijing: National Defense Industry Press, 1999.


[19]Thomas A, Ei-Wahabi M, Cabrera J M. High temperature deformation of inconel 718[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 469-472.


[20]Yuan H, Liu W C. Effect of the δ phase on the hot deformation behavior of Inconel 718[J]. Materials Science & Engineering A, 2005,408(1-2):281-289.


[21]Lin Y C, Chen M S, Zhong J. Prediction of 42CrMo steel flow stress at high temperature and strain rate[J]. Mechanics Research Communications, 2008, 35(3):142-150.


[22]Lin Y C, Wen D XDeng Jet al. Constitutive models for hightemperature flow behaviors of a Nibased superalloy[J]. Materials & Design, 2014, 59(9):115-123.


[23]Lin Y C, Li K K, Li H B, et al. New constitutive model for hightemperature deformation behavior of Inconel 718 superalloy[J]. Materials & Design, 2015,74: 108-118.


[24]Cingara A, Mcqueen H J. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels[J]. Journal of Materials Processing Technology,1992, 36(1):31-42.


[25]Kashyap B P, Chaturvedi M C. Activation energy for superplastic deformation of IN718 superalloy[J]. Scripta Materialia, 2000, 43(5): 429-433.


[26]Frost H J, Ashby M F. Deformationmechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982.


[27]Wang K, Li M Q, Luo J, et al. Effect of the δ phase on the deformation behavior in isothermal compression of superalloy GH4169[J]. Materials Science & Engineering A, 2011, 528(13-14):4723-4731.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9