网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钛合金线材旋锻数值仿真中夹具与锤头相对运动的处理方法
英文标题:Treatment methods on relative motion between clamp and hammer in numerical simulation of rotary forging for titanium alloy wire
作者:郑帮智 唐新新 田晓琳 王立亚 申学良 
单位:攀钢集团研究院有限公司 
关键词:钛合金 线材旋锻 数值模拟 ABAQUS/Explicit 锤头公转 夹具自转 
分类号:TG316
出版年,卷(期):页码:2017,42(10):195-202
摘要:

以ABAQUS/Explicit仿真软件为平台,建立了夹具自转与锤头公转的两种钛合金线材旋锻有限元模型,介绍了两种模型的接触、运动等边界条件的设定。对比仿真结果,分析了夹具随动和夹具固定两种情况所成形的线材椭圆度存在差异的原因。采用数值仿真手段,分析了两种模型模拟结果的径向应力、应变和直径差,并比较了两种模型在不同质量缩放系数下的计算时间。结果表明:锤头公转模型的求解时间明显小于夹具自转模型的求解时间,锤头公转模型的直径差以及成形的组织均匀性较夹具自转模型的更优,因此,锤头公转模型较夹具自转模型更适合于钛合金线材成形的模拟分析。另外,根据两种模型的仿真对比结果,对锤头公转模型进行了实验验证,其实验结果与仿真效果能够一一对应,说明建立的数值仿真方法能用于指导实际生产。

Two kinds of rotary forging finite element models of clamp rotation and hammer revolution for titanium alloy wire were established by the ABAQUS/Explicit simulation software, and the determining on the boundary conditions of contact and movement of two models was introduced. Based on the simulation results, the causes of ellipticity differences of the wire formed by clamp rotation and clamp fixed were analyzed. Then, the radial stress, strain and diameter difference of two models were analyzed by means of numerical simulation, and the calculation time of two models under different mass scaling coefficients was compared. The results show that the calculation time by the hammer revolution model is significantly less than that of clamp rotation model, and the diameter difference and forming structure uniformity by the hammer revolution model is better than that of clamp rotation model. Therefore, the hammer revolution model is suitable for the simulation analysis of rotary forging for titanium alloy wire. In addition, according to the simulation results of two models, the hammer revolution model is verified by the experiment results, which are consistent with the simulation results. Thus, the established numerical simulation method can guide the actual production.

基金项目:
作者简介:
作者简介:郑帮智(1988-),男,硕士,工程师,E-mail:zbz315@126.com
参考文献:

[1]王海波,毛小南, 李东, .钛及钛合金丝材制备工艺的研究现状[J].热加工工艺, 2008, 37(14): 99-103.


Wang H B, Mao X N, Li D, et al. Research status in preparation process for titanium and titanium alloy wire[J]. Hot Working Technology, 2008, 37(14):99-103.


[2]赵升吨, 张玉亭. 旋锻技术的研究现状及其应用[J]. 锻压装备与制造技术, 2010, 45(2):16-20.


Zhao S D, Zhang Y T. Research status and its application of rotary swag technique[J]. China Metalforming Equipment & Manufacturing Technology, 2010, 45(2):16-20.


[3]张琦, 母东,  靳凯强,等. 旋转锻造成形技术研究现状[J]. 锻压技术, 2015, 40(1):1-6.


Zhang Q, Mu D, Jin K Q, et al. Research status of rotary forging technology [J]. Forging & Stamping Technology, 2015, 40(1):1-6.


[4]甘国强, 李萍, 薛克敏, . TA15钛合金热变形过程中基于介观尺度的相变模拟研究[J]. 稀有金属, 2015, 39(1):91-96.


Gan G Q, Li P, Xue K M, et al. Mesoscopic simulation of phase transformation in TA15 alloy based on isothermal hot compression[J]. Chinese Journal of Rare Metals, 2015, 39(1):91-96.


[5]Kocich R, Kuncˇická L, Dohnalík D, et al. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations[J]. International Journal of Refractory Metals & Hard Materials, 2016, 61:264-272.


[6]Rong L, Nie Z R, Zuo T Y. FEA modeling of effect of axial feeding velocity on strain field of rotary swaging process of pure magnesium[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(5):1015-1020.


[7]秦文瑜, 卢曦, 高文贵,. 无芯棒式旋锻工艺参数对传动轴表面质量的影响[J]. 塑性工程学报, 2014, 21(6):14-19.


Qin W Y, Lu X, Gao W G, et al. Surface quality of monobloc tube shaft under different process parameters in rotary swaging without mandrel[J]. Journal of Plasticity Engineering, 2014, 21(6):14-19.


[8]庄茁,张帆,岑松,等. ABAQUS 非线性有限元分析与实例[M]. 北京: 科学出版社, 2005.


Zhuang Z, Zhang F, Cen S, et al. ABAQUS Nonlinear Finite Element Analysis and Examples[M]. Beijing: Science Press, 2005.


[9]肖宏, 申光宪, 木原谆二,. 三维弹塑性接触边界元法对摩擦的处理[J]. 工程力学, 1997, 14(4): 83-88.


Xiao H, Shen G X, Aizawa T, et al. The friction model for three dimensional elastoplastic contact boundary element method[J]. Engineering Mechanics, 1997, 14(4): 83-88.


[10]ABAQUS Inc. ABAQUS Analysis User′s Manual[M].Version 6.12. Providence: ABAQUS Inc., 2010.


[11]栾谦聪, 董湘怀, 吴云剑. 径向锻造工艺参数对锻透性的影响[J]. 中国机械工程, 2014, 25(22):3098-3103.


Luan Q C, Dong X H, Wu Y J. Effects of process parameters on FPE in radial forging processes[J]. China Mechanical Engineering, 2014, 25(22):3098-3103.


[12]董节功, 周旭东, 朱锦洪,. 径向锻造三维成形锻透性的数值模拟[J]. 机械工程材料, 2007, 31(3):76-78.


Dong J G, Zhou X D, Zhu J H, et al. FEM simulation of forging penetration efficiency of radial forging in 3D[J]. Materials for Mechanical Engineering, 2007, 31(3):76-78.


[13]Liu X R, Zhou X D. The forging penetration efficiency of C45 steel stepped shaft radial forging with GFM forging machine[J]. Advanced Materials Research, 2010, 154-155:593-596.


[14]GJB 2219—1994, 紧固件用钛及钛合金棒(线)材规范[S].


GJB 2219—1994, Specification for titanium and titanium alloy bars (wires) for jastener [S].

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9