网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
应变速率和应力三轴度对316LN钢强度的影响
英文标题:Influence of strain rate and stress triaxiality on strength of steel 316LN
作者:段兴旺 刘建生 
单位:太原科技大学 
关键词:316LN钢 热拉伸实验 屈服强度 抗拉强度 应力三轴度 灰度速率 
分类号:TG316
出版年,卷(期):页码:2017,42(11):172-176
摘要:
为了获得应变速率和应力三轴度对316LN钢强度的影响,在Gleeble-1500D热模拟实验机上进行了温度为1050 ℃的热拉伸实验。对于光滑试样,应变速率分别为0.005, 0.05, 0.5和1 s-1。对于缺口试样,应变速率设为0.5 s-1,缺口半径分别设为0.5, 1, 2和 4 mm。结果表明,随应变速率和应力三轴度的增加,屈服强度和抗拉强度增加,屈强比减小,裂纹不易萌生。通过回归分析,分别建立了强度指标与应变速率和应力三轴度之间的数学模型,并通过敏感性分析得到:随应变速率增加和应力三轴度减小,应变速率和应力三轴度对强度的影响变小。
To obtain the influence of strain rate and stress triaxiality on strength of steel 316LN, the thermal tensile tests of steel 316LN were conducted by Gleeble-1500D thermal simulator at 1050 ℃. For the smooth specimens, the strain rates were set as 0.005, 0.05, 0.5 and 1 s-1 respectively. However, for the notched specimens, the strain rate was set as 0.5 s-1, and the notch-radius were set as 0.5, 1, 2 and 4 mm respectively. The results show that with the increase of strain rate and stress triaxiality, the yield strength and tensile strength increase, and the yield-tensile ratio decreases. Thus, the crack is hard to produce. Furthermore, the models between strength index and strain rates, stress triaxialities were established by regression analysis respectively. At last, the sensitivity analysis shows that with the increase of strain rate and the decrease of stress triaxiality,the influences of strain rate and stress triaxiality on strength decrease.
基金项目:
山西省自然科学基金资助项目(2014011015-5);太原科技大学博士启动基金项目(20142010)
作者简介:
作者简介:段兴旺(1973-),男,博士,副教授 E-mail:dxwmike1998@sina.com
参考文献:
[1]Duan X W, Liu J S.Research on damage evolution and damage model of 316LN steel during forging[J]. Materials Science and Engineering A, 2013, 588: 265-271.

[2]Hussaini S M, Singh S K, Gupta A K. Experimental and numerical investigation of formability for austenitic stainless steel 316 at elevated temperatures[J].Journal of Materials Research and Technology,2014, 3(1): 17-24.

[3]Guo B F, Ji H P, Liu X G, et al.Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel[J]. Journal of Materials Engineering and Performance, 2012, 21: 1455-1461.

[4]He W W, Liu J S, Chen H Q,et al. Processing maps and microstructure evolution of 316LN stainless steel[J]. Advanced Science Letters, 2011,4: 1235-1239.

[5]Zhang X Z, Zhang Y S, Li Y J, et al. Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation[J]. Materials Science and Engineering A, 2013, 559: 301-306.

[6]段兴旺,黑志刚,刘建生,等. 316LN钢裂纹萌生的临界损伤值[J]. 塑性工程学报,2013,20(3): 60-64.

Duan X W, Hei Z G, Liu J S, et al. Critical damage value of 316LN steel crack initiation[J]. Journal of Plasticity Engineering, 2013, 20(3):60-64.

[7]段兴旺,刘建生.应力三轴度对316LN钢临界损伤值的影响[J]. 塑性工程学报,2014,21(3):128-131.

Duan X W, Liu J S. Influence of stress triaxiality on critical damage value of 316LN steel[J]. Journal of Plasticity Engineering, 2014,21(3):128-131.

[8]刘杨,王磊,乔雪璎,等.应变速率对电场处理GH4199合金拉伸变形行为的影响[J].稀有金属材料与工程,2008,37(1):66-71.

Liu Y,Wang L, Qiao X Y, et al. Effect of strain rate on tensile deformation behavior of GH4199 superalloy after electric field treatment[J].Rare Metal Materials and Engineering, 2008,37(1):66-71.

[9]于庆波,孙莹,黄传辉,等. 屈强比对塑性影响的研究[J]. 塑性工程学报,2008,16(1):153-155,166.

Yu Q B,Sun Y, Huang C H, et al. Research of yield-strength ratio on the plasticity[J]. Journal of Plasticity Engineering, 2009, 16(1): 153-155, 166.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9