[1]马国英, 黄彬兵, 苏春建, 等. 汽车翼子板拉深成形模拟及工艺参数优化[J]. 锻压技术, 2015, 40(3): 21-24.
Ma G Y, Huang B B, Su C J, et al. Simulation and parameters optimization of deep drawing for automobile fender[J]. Forging & Stamping Technology, 2015, 40(3): 21-24.
[2] 朱梅云, 傅建, 崔礼春. 基于伺服技术的板材冲压成形性研究[J]. 锻压技术, 2014, 39(10): 43-46.
Zhu M Y, Fu J, Cui L C. Research on the formability of steel plate based on servo technology[J]. Forging & Stamping Technology, 2014, 39(10): 43-46.
[3] 刘驰. 侧围外板冲压成形仿真技术与应用[J]. 锻压技术, 2014, 39(1): 41-45.
Liu C. Simulation and application of stamping process for side-frame outer panel[J]. Forging & Stamping Technology, 2014, 39(1): 41-45.
[4] 林策, 彭艳, 孙建亮, 等. 板形缺陷板料冲压变形及回弹仿真分析[J]. 锻压技术, 2012, 37(6): 174-178.
Lin C, Peng Y, Sun J L, et al. Stamping deformation and springback simulation analysis of sheet metal with shape defects[J]. Forging & Stamping Technology, 2012, 37(6): 174-178.
[5] 宫晓峰, 于仁萍. 基于Autoform汽车后围上盖板拉延成形模拟应用[J]. 锻压技术, 2014, 39(4): 149-153.
Gong X F, Yu R P. Application of drawing simulation for automobile reinforcement upper back based on Autoform[J]. Forging & Stamping Technology, 2014, 39(4): 149-153.
[6] 张涛, 樊文欣, 郭代峰, 等. 基于BP神经网络的温挤压模具磨损量预测[J]. 锻压技术, 2017, 42(2): 178-182.
Zhang T, Fan W X, Guo D F, et al. Prediction on wear loss of warm extrusion die based on BP neural network[J]. Forging & Stamping Technology, 2017, 42(2): 178-182.
[7] 王晓莉, 穆瑞, 张咏琴. 基于BP神经网络的薄板成形回弹仿真预测[J]. 锻压技术, 2016, 41(6): 146-149.
Wang X L, Mu R, Zhang Y Q. Numerical prediction of springback in sheet metal forming based on BP neural network[J]. Forging & Stamping Technology, 2016, 41(6): 146-149.
[8] 庞敬礼. 基于BP神经网络的传力片冲裁凸模磨损仿真预测[J]. 锻压技术, 2016, 41(11): 114-117.
Pang J L. Simulation prediction on blanking punch wear of leaf spring based on BP neural network[J]. Forging & Stamping Technology, 2016, 41(11): 114-117.
|