网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
304奥氏体不锈钢热变形行为及热加工图
英文标题:Hot deformation behavior and processing map of austenite stainless steel 304
作者:廖喜平 谢其军 胡成亮 赵震 
单位:上海交通大学 上海威克迈龙川汽车发动机零件有限公司 
关键词:304奥氏体不锈钢 热压缩 本构模型 热加工图 微观组织演变 
分类号:TG142.71
出版年,卷(期):页码:2017,42(12):150-156
摘要:

 在应变速率为0.1~10 s-1、变形温度为800~1200 ℃的变形条件下,利用Gleeble-1500热模拟机对304奥氏体不锈钢进行单向热压缩实验,研究其高温下的流变行为。根据实验数据,304奥氏体不锈钢的流变应力随温度和应变速率变化明显,应变速率越大,变形温度越低,流变应力越大。基于Arrhenius 模型推导出材料的热变形本构方程,并算得材料的热变形激活能为486.0 kJ·mol-1。建立了真应变为0.7时的热加工图,结合微观组织分析表明:变形温度为1025~1200 ℃、应变速率为0.1~0.8 s-1时,材料功率耗散系数大于26%,变形过程中发生动态再结晶,此范围为304奥氏体不锈钢的最佳工艺参数。

 

 The uniaxial hot compress experiments of austenite stainless steel 304 with strain rate of 0.1-10 s-1 and temperature range of 850-1200 ℃ were carried out by Gleebe-1500 thermal mechanical simulation machine. Based on the experimental data, the flow stress of austenite stainless steel 304 has a significant influence on the change of temperature and strain rate, the greater the strain rate is, the lower the deformation temperature and the greater the flow stress are. Then, the constitutive equation was deduced by Arrhenius mode to calculate the activation energy of heat forming for austenite stainless steel 304 which was 486.0 kJ·mol-1, and the hot processing map was established under the true strain of 0.7. The analysis of microstructure shows that the dynamic recrystallization happens with the temperature range of 1025-1200 ℃, the strain rate range of 0.1-0.8 s-1 and the efficiency of power dissipation over 26%, which are the optimum technology parameters for austenite stainless steel 304.

 
基金项目:
国家自然科学基金资助项目(51475294)
作者简介:
作者简介:廖喜平(1992-),男,硕士研究生 E-mail:Simon-liao@sjtu.edu.cn 通讯作者:胡成亮(1980-),男,博士,副研究员 E-mail:clhu@sjtu.edu.cn
参考文献:

 


 


[1]孟亚惠, 季根顺, 樊丁, 等. 不锈钢高温组织与高温力学性能研究进展[J]. 热加工工艺, 2009, 38(4):12-16. 

 

Meng Y H, Ji G S, Fan D, et al. Research progress of high-temperature microstructure and mechanical property of stainless steel[J]. Hot Working Technology, 2009, 38(4):12-16.

 


[2]Wang C J, Feng H, Zheng W J, et al. Dynamic recrystallization behavior and microstructure evolution of AISI 304N stainless steel[J]. Journal of Iron and Steel Research, 2013, 20(10):107-112.

 


[3]刘光辉, 刘华, 王伟钦,等. 316 L不锈钢压缩热变形行为及临界损伤值研究[J]. 锻压技术, 2016, 41(2):118-123.

 

Liu G H, Liu H, Wang W Q, et al. Study on compressed thermal deformation behavior and critical damage value of stainless steel 316L[J]. Forging & Stamping Technology, 2016, 41(2):118-123.

 


[4]Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation[J]. Materials Science & Engineering A, 2008, 485(1-2):664-672.

 


[5]Parsa M H, Ohadi D. A constitutive equation for hot deformation range of 304 stainless steel considering grain sizes[J]. Materials & Design, 2013, 52(24):412-421.

 


[6]潘红波, 唐荻, 胡水平, 等. 平面应变压缩技术的研究[J]. 锻压技术, 2008, 33(2):75-79.

 

Pan H B, Tang D, Hu S P, et al. Study on plane strain physical compression technology[J]. Forging & Stamping Technology, 2008, 33(2):75-79. 

 


[7]王艳, 王明家, 蔡大勇, 等. 高强度奥氏体不锈钢的热变形行为及其热加工图[J]. 材料热处理学报, 2005, 26(4):65-68.

 

Wang Y, Wang M J, Cai D Y, et al. Hot deformation behavior and processing maps of high strength austenite stainless[J]. Transactions of Materials and Heat Treatment, 2005, 26(4):65-68.

 


[8]吴琨, 邹德宁, 韩英, 等. 304Cu奥氏体不锈钢热变形本构模型[J]. 热加工工艺, 2013, 42(14):15-17.

 

Wu K, Zou D N, Han Y, et al. Constitutive model of 304Cu austenite stainless steel during hot deformation[J]. Hot Working Technology, 2013, 42(14):15-17.

 


[9]刘诚, 董洪波, 张贵华,等. 基于Murty判据的TC4-DT合金加工图及失稳分析[J]. 锻压技术, 2015, 40(1):113-118.

 

Liu C, Dong H B, Zhang G H, et al. Processing drawing and flow instability analysis of TC4-DT titanium alloy based on Murty criterion[J]. Forging & Stamping Technology, 2015, 40(1):113-118.

 


[10]Babu K A, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J]. Materials & Design, 2017, 115: 262-275. 

 


[11]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

 


[12]An H E, Wang X, Xie G L, et al. Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation[J]. Journal of Iron and Steel Research, 2015, 22(8): 721-729.

 


[13]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136-1138.

 


[14]Frost H J, Ashby M F. Deformation-mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982.

 


[15]Ziegler H. Progress in Solid Mechanics[M]. New York:Wiley Press,1963.

 


[16]Prasad Y V R K. Author′s reply: Dynamic materials model: Basis and principles[J]. Metallurgical & Materials Transactions A, 1996, 27(1):235-236.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9