[1]孟亚惠, 季根顺, 樊丁, 等. 不锈钢高温组织与高温力学性能研究进展[J]. 热加工工艺, 2009, 38(4):12-16.
Meng Y H, Ji G S, Fan D, et al. Research progress of high-temperature microstructure and mechanical property of stainless steel[J]. Hot Working Technology, 2009, 38(4):12-16.
[2]Wang C J, Feng H, Zheng W J, et al. Dynamic recrystallization behavior and microstructure evolution of AISI 304N stainless steel[J]. Journal of Iron and Steel Research, 2013, 20(10):107-112.
[3]刘光辉, 刘华, 王伟钦,等. 316 L不锈钢压缩热变形行为及临界损伤值研究[J]. 锻压技术, 2016, 41(2):118-123.
Liu G H, Liu H, Wang W Q, et al. Study on compressed thermal deformation behavior and critical damage value of stainless steel 316L[J]. Forging & Stamping Technology, 2016, 41(2):118-123.
[4]Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation[J]. Materials Science & Engineering A, 2008, 485(1-2):664-672.
[5]Parsa M H, Ohadi D. A constitutive equation for hot deformation range of 304 stainless steel considering grain sizes[J]. Materials & Design, 2013, 52(24):412-421.
[6]潘红波, 唐荻, 胡水平, 等. 平面应变压缩技术的研究[J]. 锻压技术, 2008, 33(2):75-79.
Pan H B, Tang D, Hu S P, et al. Study on plane strain physical compression technology[J]. Forging & Stamping Technology, 2008, 33(2):75-79.
[7]王艳, 王明家, 蔡大勇, 等. 高强度奥氏体不锈钢的热变形行为及其热加工图[J]. 材料热处理学报, 2005, 26(4):65-68.
Wang Y, Wang M J, Cai D Y, et al. Hot deformation behavior and processing maps of high strength austenite stainless[J]. Transactions of Materials and Heat Treatment, 2005, 26(4):65-68.
[8]吴琨, 邹德宁, 韩英, 等. 304Cu奥氏体不锈钢热变形本构模型[J]. 热加工工艺, 2013, 42(14):15-17.
Wu K, Zou D N, Han Y, et al. Constitutive model of 304Cu austenite stainless steel during hot deformation[J]. Hot Working Technology, 2013, 42(14):15-17.
[9]刘诚, 董洪波, 张贵华,等. 基于Murty判据的TC4-DT合金加工图及失稳分析[J]. 锻压技术, 2015, 40(1):113-118.
Liu C, Dong H B, Zhang G H, et al. Processing drawing and flow instability analysis of TC4-DT titanium alloy based on Murty criterion[J]. Forging & Stamping Technology, 2015, 40(1):113-118.
[10]Babu K A, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J]. Materials & Design, 2017, 115: 262-275.
[11]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[12]An H E, Wang X, Xie G L, et al. Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation[J]. Journal of Iron and Steel Research, 2015, 22(8): 721-729.
[13]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136-1138.
[14]Frost H J, Ashby M F. Deformation-mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982.
[15]Ziegler H. Progress in Solid Mechanics[M]. New York:Wiley Press,1963.
[16]Prasad Y V R K. Author′s reply: Dynamic materials model: Basis and principles[J]. Metallurgical & Materials Transactions A, 1996, 27(1):235-236.
|