网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大型厚壁管热挤压成形工艺参数优化
英文标题:Optimization on hot extrusion process parameters for large thick-walled pipe
作者:李琚陈 
单位:安徽文达信息工程学院 
关键词:大型厚壁管 垂直热挤压 P91钢 有限元仿真模型 虚拟正交试验 
分类号:TG376.2
出版年,卷(期):页码:2018,43(1):77-82
摘要:

以P91钢大型厚壁管为研究对象,基于Deform-3D平台建立厚壁管垂直热挤压过程的有限元仿真模型。选取坯料预热温度T0、挤压比λ、挤压速度v、凹模锥角β和摩擦因子μ为影响因素,以最大挤压力Fmax、成形管平均壁厚davg、模口等效应变均方差εsdv和模口金属流速均方差Vsdv为衡量指标,进行虚拟正交试验。通过实际工业生产,验证了有限元模拟结果的可靠性。研究结果表明:影响Fmax,davg,εsdv,Vsdv的因素主次顺序分别为:λ>T0>β>μ>v,λ>v>T0>μ>β,β>λ>v≈μ>T0和v>T0>μ>λ>β;获得尺寸为Ф720 mm×Ф520 mm×12000 mm的P91钢大型厚壁管热挤压成形工艺参数的取值范围为:T0=1150~1200 ℃,λ=5~7,v=20~60 mm·s-1,β=35°~45°,μ=0.05~0.2。经过实际工业生产验证可知,虚拟正交试验得到的工艺参数较为准确、可靠。

For large thick-walled pipe of steel P91, a finite element model of its vertical hot extrusion process was established by the Deform-3D software. The virtual orthogonal experiment was numerically simulated with influential factors of the blank preheating temperature T0, extrusion ratio λ, extrusion speed v, taper angle β of die and friction factor μ and with evaluation indexes of the maximum extrusion load Fmax, the average wall thickness davg of forming pipe, the mean square error of equivalent strain εsdv at die export and the mean square error of metal flow rate Vsdv at die export. The reliability of finite element simulation results were verified by actual industrial production. The results show that the significance sequences of influence on Fmax, davg, εsdv and Vsdv are λ>T0>β>μ>v, λ>v>T0>μ>β, β>λ>v≈μ>T0 and v>T0>μ>λ>β, respectively. For the large thick-walled pipe of steel P91 with Ф720 mm×Ф520 mm×12000 mm, the reasonable ranges of forming process parameters are T0=1150-1200 ℃, λ=5-7, v=20-60 mm·s-1, β=35°-45° and μ=0.05-0.2. The actual industrial production shows that the process parameters obtained by the virtual orthogonal experiments are accurate and reliable.

基金项目:
安徽高校自然科学研究重点项目(KJ2017A650)
作者简介:
作者简介:李琚陈(1986-),男,硕士,讲师,E-mail:cjcahwd@163.com
参考文献:

[1]贾璐, 李永堂, 李振晓. 耐热合金钢P91热变形过程静态及亚动态再结晶行为[J].机械工程学报, 2017, 53(8):58-67.


Jia L, Li Y T, Li Z X. Static and metadynamic recrystallization behaviors of heat-resistant P91 alloy during hot deformation [J]. Journal of Mechanical Engineering, 2017, 53(8):58-67.


[2]门正兴, 马亚鑫, 周杰, . 核电用SA508-3钢大型锻件的内部裂纹缺陷分析及工艺优化[J]. 锻压技术, 2017, 42(8): 1-6.


Men Z X, Ma Y X, Zhou J, et al. Internal crack defect analysis and process optimization on heavy forging steel SA508-3 used for unclear power [J]. Forging & Stamping Technology, 2017, 42(8): 1-6.


[3]Chelu G, Ghiban N. Technological parameters influence on the hot extrusion force of the pipes[J]. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2002, 64(4):47-56.


 [4]Middleton J. Hot extrusion of special sections in stainless steels[J]. Ironmaking and Steelmaking, 1988, 15(3), 150-156.


[5]张保军, 杨合, 郭良刚, . 基于虚拟正交试验的Inconel 690 合金大口径厚壁管挤压工艺仿真[J]. 稀有金属材料与工程, 2013, 42(3): 488-493.


Zhang B J, Yang H, Guo L G, et al. Virtual orthogonal experiment study on needle piercing extrusion process of Inconel 690 alloy large-diameter thick-walled tube[J]. Rare Metal Materials and Engineering, 2013, 42(3):488-493.


[6]王引卫. 304不锈钢大型管材挤压工艺虚拟正交优化[J]. 热加工工艺, 2013, 42(13): 87-91.


Wang Y W. Virtual orthogonal optimization on extrusion process of large 304 stainless steel tube [J]. Hot Working Technology, 2013, 42(13):87-91.


[7]惠恬静, 雷步芳, 贾璐, . 大口径厚壁无缝钢管热挤压过程中挤压力的求解[J]. 塑性工程学报, 2017, 24(4): 110-116.


Hui T J, Lei B F, Jia L, et al. Solution of extrusion force during hot extrusion processes for large caliber thick wall seamless steel tube [J]. Journal of Plasticity Engineering, 2017, 24(4):110-116.


[8]于彬, 林鹏. A335P91马氏体耐热钢焊接工艺研究[J]. 热加工工艺, 2009, 38(15): 140-141.


Yu B, Lin P. Research on welding process of A335P91 martensite heat-resistant steel [J]. Hot Working Technology, 2009, 38(15):140-141.


[9]邓馗, 李永堂, 付建华, . 铸态 P91耐热合金钢高温流变行为及本构方程[J]. 锻压技术, 2014, 40(11): 100-106.


Deng K, Li Y T, Fu J H, et al. High temperature rheological behavior and constitutive equation of as-cast heat-resisting alloy steel P91[J]. Forging & Stamping Technology, 2014, 40(11): 100-106.


[10]李振晓, 雷步芳, 付建华, . 铸态P91耐热合金钢动态再结晶模型的建立[J]. 锻压技术, 2016, 41(1): 121-126.


Li Z X, Lei B F, Fu J H, et al. Modeling of dynamic recrystallization for as-cast heat-resistant alloy steel P91[J]. Forging & Stamping Technology, 2016, 41(1): 121-126.


[11]贾璐, 李永堂, 李振晓. 基于ABAQUS的铸态耐热合金钢热挤压成形数值模拟研究[J]. 精密成形工程, 2016, 8(5): 108-115.  


Jia L, Li Y T, Li Z X. The numerical simulation based on ABAQUS for hot extrusion forming of cast heat-resisting alloy steel [J]. Journal of Netshape Forming Engineering, 2016, 8(5):108-115.


[12]俞汉青, 陈金德. 金属塑性成形原理[M]. 北京: 机械工业出版社, 1999.


Yu H Q, Chen J D. Principle of Metal Plastic Forming [M]. Beijing: China Machine Press, 1999.


[13]王怀柳. GH690 合金热挤压工艺的研究[J]. 特钢技术, 2008, 14(55): 31-34.


Wang H L. Study on hot extrusion process for GH690 alloy [J]. Special Steel Technology, 200814(55):31-34.


 [14]陈浩, 赵国群, 张存生, . 薄壁空心铝型材挤压过程数值模拟及模具优化[J]. 机械工程学报, 2010,46(24):34-39.


Chen H, Zhao G Q, Zhang C S, et al. Numerical simulation of extrusion process and die structure optimization for a hollow aluminum profile with thin wall[J]. Journal of Mechanical Engineering, 2010, 46(24):34-39.


 [15]吴连平, 杨晓翔. 基于虚拟正交试验的关节轴承工艺参数优化设计[J]. 塑性工程学报, 2014, 21(6): 7-13.


Wu L P, Yang X X. Optimal design of technological parameters for spherical plain bearings based on virtual orthogonal experiment [J]. Journal of Plasticity Engineering, 2014, 21(6):7-13.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9