网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
反复锻压模具结构和加工工艺的有限元分析
英文标题:Finite element analysis on mould structure and processing technology for repetitive forging
作者:郭炜 谌昀 陆德平 刘克明 付远 
单位:江西省科学院应用物理研究所 南昌工程学院 
关键词:反复锻压 模具结构 大应变量塑性加工技术 Deform-3D AZ31 镁合金 
分类号:TG306
出版年,卷(期):页码:2018,43(1):102-109
摘要:

采用Deform-3D数值模拟软件对反复锻压模具结构和加工工艺进行有限元分析,发现:缩小模具型腔宽度能够增大试样每个锻压道次的等效应变,但应变分布均匀程度和试样形状尺寸保持度相应降低;模具存在一定的过渡角半径时,试样表面具有较好的成形质量,应变分布均匀性随着过渡角半径的增大有所提高;试样每道次锻压后绕Z轴旋转90°再进行下个道次锻压,等效应变分布比每道次锻压后试样不旋转更均匀;加工速度对锻压后试样的温升影响十分明显,速度越高温升越显著;随着锻压温度的提高,载荷峰值不断降低,试样中应变和应力分布逐渐均匀;随着摩擦系数的提高,等效应变分布均匀性有所改善,摩擦系数提高到0.2时分布最均匀,继续增大到0.3时分布均匀性开始显著降低。在300 ℃和0.1 mm·s-1条件下锻压AZ31 镁合金的实验表明:5道次后晶粒显著细化,平均晶粒尺寸由约200 μm细化到最小约1.3 μm。

The die structure and processing technology of repetitive forging was analyzed by numerical simulation software Deform-3D. It is found that the equivalent strain of each forging pass is increased by reducing the width of mould cavity, however, the homogeneity of strain distribution and the shape and size retentivity of sample decrease. When a certain transitional angle radius existes in the mould, the sample surface obtaines a better forming quality, and the homogeneity of strain distribution is slightly improved with the increasing of transitional angle radius. While the sample is forged by next pass after it is rotated 90° around the Z-axis, more uniform effective strain distribution is obtained. Furthermore, the influence of processing speed on the temperature rise in the forged sample is very significant, and a higher speed makes the temperature rise remarkably. With the increasing of forging temperature, the maximum load decreases, while the homogeneity of strain and stress distribution in the sample increases. With the increasing of friction coefficient, the distribution uniformity of effective strain is slightly improved, and the most homogeneous strain distribution is obtained when it increases to 0.2, however, the distribution uniformity startes to decrease obviously when it continues to increase to 0.3. The experimental investigation of forging magnesium alloy AZ31 at 300 ℃ with a speed of 0.1 mm·s-1 shows that the average grain size is notably refined from about 200 μm to the minimum 1.3 μm after five passes.

 

基金项目:
国家自然科学基金资助项目(51404151, 51561010, 51461018);江西省自然科学基金重大项目(20144ACB20013);江西省科学院重点科研项目(2017-YZD2-20);科研开发专项基金博士项目(2015-YYB-11);协同创新专项普惠制一类项目(2015-XTPH1-11)
作者简介:
作者简介:郭 炜(1981-),男,博士,副研究员,E-mail:guowei053@163.com
参考文献:

[1]Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science, 2006, 51(7): 881-981.


[2]Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals[J]. CIRP Annals-Manufacturing Technology, 2008, 57(2): 716-735.


[3]周旭阳,梁伟,韩富银,等. 等通道转角挤压ZK31+4Si镁合金的显微组织及高温蠕变行为[J]. 稀有金属材料与工程,2012, 41(5): 867-871.


Zhou X Y, Liang W, Han F Y, et al. Microstructure and creep behavior of ECAPed ZK31+4Si magnesium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(5): 867-871.


[4]Guo W, Wang Q D, Ye B, et al. Enhanced microstructure homogeneity and mechanical properties of AZ31-Si composite by cyclic closed-die forging[J]. Journal of Alloys & Compounds, 2013, 552(10): 409-417.


[5]方晓强,李淼泉,林莺莺. Ti-6Al-4V钛合金等通道转角挤压的有限元模拟[J]. 材料工程,200733(5): 102-106.


Fang X Q, Li M Q, Lin Y Y. Finite element simulation of equal channel angular pressing of Ti-6Al-4V alloy[J]. Journal of Materials Engineering, 2007, 33(5): 102-106.


[6]Yoon S C, Horita Z, Kim H S. Finite element analysis of plastic deformation behavior during high pressure torsion processing[J]. Journal of Materials Processing Technology, 2008, 201(1-3): 32-36.


[7]Inoue T, Yanagida A, Yanagimoto J. Finite element simulation of accumulative roll-bonding process[J]. Materials Letters, 2013, 106(9): 37-40.


[8]刘君,郭学锋,张忠明,等. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程, 2012, (5): 70-75.


Liu J, Guo X F, Zhang Z M, et al. Influences of processing parameters on reciprocating extrusion process of AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2012, (5): 70-75.


[9]Guo W, Wang Q D, Ye B, et al. Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting[J]. Materials Science and Engineering A, 2012, 540: 115-122.


[10]Liu J F, Wang Q D, Zhou H, et al. Microstructure and mechanical properties of NZ30K magnesium alloy processed by repetitive upsetting[J]. Journal of Alloys & Compounds, 2014, 589(4): 372-377.


[11]Zhou H, Ye B, Wang Q D, et al. Uniform fine microstructure and random texture of Mg-9.8Gd-2.7Y-0.4Zr magnesium alloy processed by repeated-upsetting deformation[J]. Materials Letters, 2012, 83(23): 175-178.


[12]郭炜. 反复压缩大塑性变形制备镁基复合材料的组织与性能研究[D]. 上海: 上海交通大学, 2013.


Guo W. Study on Microstructure and Properties of Magnesium Matrix Composites Fabricated by Repeated Compression Severe Plastic Deformation[D]. Shanghai: Shanghai Jiao Tong University, 2013.


[13]Lin J B, Wang Q D, Liu M P, et al. Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8): 1902-1906.


[14]Oruganti R K, Subramanian P R, Marte J S, et al. Effect of friction, backpressure and strain rate sensitivity on material flow during equal channel angular extrusion[J]. Materials Science and Engineering A, 2005, 406(1-2): 102-109.


[15]杨智强,史庆南,起华荣,等. 6062 铝合金等径角挤压有限元模拟[J]. 兵器材料科学与工程,200932(5): 12-14.


Yang Z Q, Shi Q N, Qi H R, et al. Finite element analysis of equal channel angular pressing of 6062 Al alloy[J]. Ordnance Material Science and Engineering, 200932(5): 12-14.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9