网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
3-PRR全柔顺并联机构的水平集多目标拓扑优化设计及灵敏度分析
英文标题:Multi-objective topology optimization design and sensitivity analysis on 3-PRR fully compliance parallel mechanism based on level-set method
作者:王鑫辉 常琮尧 杜苏睿 焦凡苇 
单位:中北大学朔州校区 
关键词:3-PRR全柔顺并联机构 运动同构特性 水平集拓扑优化 灵敏度分析 微运动特性 
分类号:TP391
出版年,卷(期):页码:2018,43(1):181-188
摘要:

采用同构映射和微分运动学原理并基于显式运动副的传统3-PRR型并联机构,推导其微运动Jacobian矩阵。基于水平集方法,定义柔度最小化为优化目标函数,以微运动Jacobian矩阵为输入、输出映射的运动约束,以优化前后的材料体积分数为优化约束,构建3-PRR全柔顺并联机构的优化模型,运用OptiStruct优化求解器,求解出3-PRR全柔顺并联机构的最佳构型和设计灵敏度。研究表明:所设计的3-PRR全柔顺并联机构与传统3-PRR型并联机构具有一致的微运动特性,优化结果的柔度值达到最小化的同时,能有效地消除应力集中现象。该理论分析和仿真优化对平面乃至空间弹性微变形机构,甚至是智能蠕动机构的最佳构型设计具有切实可行的意义。

 The differential Jacobian matrix was derived by the theory of isomorphic mapping and differential kinematic principle based on traditional 3-PRR parallel mechanism of explicit joints. And according to level-set method, the minimum compliance was defined as optimization objective function, the differential Jacobian matrix was defined as kinetic constraint of input-output mapping relation, and the volume fraction of material before and after optimization was defined as optimal constraint to establish the optimization model of 3-PRR fully compliance parallel mechanism. Furthermore, the optimal configuration and design sensitivity of 3-PRR fully compliance parallel mechanism were solved by optimization solver OptiStruct. The research indicates that the micro movement characteristics of the designed 3-PRR fully compliance parallel mechanism are consistent with that of traditional 3-PRR parallel mechanism, and the phenomenon of stress concentration is eliminated when the compliance of optimization result is up to the minimum. The theory analysis and simulation optimization provide practical meaning for the optimal configuration design of planar and spatial micro elastic deformation mechanism and even intelligent crawling mechanism.

基金项目:
作者简介:
作者简介:王鑫辉(1996- ),男,本科,E-mail:1224702830@qq.com
参考文献:

[1]荣伟彬,马立,孙立宁,等.二维微动工作台分析及其优化设计方法[J].机械工程学报,200642(5)26-30.


Rong W B, Ma L, Sun L N, et al. Analysis and optimum design of 2-DOF micro-positioning stage[J].Chinese Journal of Mechanical Engineering200642(5)26-30.


[2]豪厄尔. 柔顺机构学[M]. 余跃庆, . 北京:高等教育出版社,2007.


Howell L L. Compliant Mechanisms[M]. Translated by Yu Y Q. BeijingHigher Education Press2007.


[3]Howell L LMidma A. Parametric deflection approxiations for end-loaded large-deflection beams in compliant mechanisms[J]. Journal of Mechanical Design, 1995, 117(1): 156-165.


[4]李茜,余跃庆,常星.基于2R伪刚体模型的柔顺机构动力学建模及特性分析[J].机械工程学报,201248 (13)40-48.


Li Q, Yu Y Q, Chang X. Dynamic modeling and analysis of compliant mechanisms based on 2R pseudo-rigid-body model[J].Chinese Journal of Mechanical Engineering201248 (13)40-48.


[5]朱大昌,宋马军.基于多目标拓扑优化的全柔顺并联机构构型固有振动频率研究[J].中国机械工程,201526(13)1794-1801.


Zhu D C, Song M J. Research on natural vibration frequency of fully compliant parallel mechanism configuration based on multi-objective topology optimization[J].China Mechanical Engineering201526(13)1794-1801.


[6]汪源,朱伟,沈惠平.一种柔顺并联自适应机构的工作特性分析[J].机械设计与研究,201329(4)25-29.


Wang Y, Zhu W, Shen H P. A novel adaptive flexible parallel mechanism and its operating characteristics analysis[J].Machine Design & Research201329(4)25-29.


[7]任学平,谈艳阳,田凯.换辊小车横移车架结构的多目标优化设计[J].锻压技术,201742 (9) 157-162.


Ren X P, Tan Y Y, Tian K. Multi-objective optimization on the transverse frame of roll change car[J].Forging & Stamping Technology201742(9) 157-162.


[8]宋马军.基于静动态多目标拓扑优化理论的弹性微变形并联机构构型综合与设计[D].赣州:江西理工大学,2016.


Song M J. Configuration Synthesis and Design of Elastic Micro Deformation Parallel Mechanism Based on Statics/Dynamics Multi-objective Topology Optimization [D]. GanzhouJiangxi University of Science and Technology2016.


[9]Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 71(1): 197-224.


[10]袁志鹏,吴任东,袁朝龙,等.重载圆筒式橡皮囊压机筒形机架优化设计[J].锻压技术,201641(11)105-114.


Yuan Z PWu R D, Yuan C L, et al. Optimization design on cylinder frame for overloading cylindrical type rubber bladder hydraulic press[J]. Forging & Stamping Technology201641(11)105-114.


[11]Van Dijk N P, Langelaar M, Van Keulen F. Explict level-set-based topology optimization using an exact Heaviside function and consistent sensitivity analysis[J]. International Journal for Numerical Methods in Engineering, 2012, 91(1):67-79.


[12]Lio Z, Zhang N, Wu T. Design of compliant mechanisms using meshless levelset methods[J].Computer Modeling in Engineering & Sciences201285(4)299-328.


[13]Challis V J. Multi-property Topology Optimization with the Level Set Method[D]. Queensland,Australia: The University of Queensland, 2009.


[14]Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics,2004, 194(1)363-393.


[15]谢晖,凌鸿伟. 基于Sobol法的热成形工艺参数全局灵敏度分析及优化设计[J].塑性工程学报,201623(2) 11-15.


Xie HLing H W. Global sensitivity analysis and optimal design for hot forming parameters based on sobol method[J]. Journal of Plasticity Engineering201623(2) 11-15.


[16]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.


Huang Z, Zhao Y S, Zhao T S. Advanced Spatial Mechanism[M]. BeijingHigher Education Press2006.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9