网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高速冷敲花键性能层力学性能及力学模型分析
英文标题:Analysis on mechanical properties and mechanical model of performance layer for high speed cold roll-beating spline
作者:牛婷 李永堂 
单位:太原科技大学 金属材料成形理论与技术山西省重点实验室 
关键词:高速冷敲花键 纳米压痕 显微硬度 弹性模量 抗磨损性能 力学模型 
分类号:TG315.79
出版年,卷(期):页码:2018,43(2):0-0
摘要:

 分析了冷敲花键齿面力学性能的分布情况,并建立相关力学模型。在现有研究基础上,确定花键齿面性能层区域,进而确定本试验的测试点区域。利用纳米压痕测试技术,对测试点进行纳米压痕试验。得到了各测试点的载荷-位移曲线、显微硬度分布曲线、弹性模量分布曲线。通过分析显微硬度与弹性模量比值,研究了冷敲花键性能层抗磨损性能情况。结果显示:在距离花键表层80 μm处,从齿顶到齿根,硬度相对芯部依次提高15.83%至36.11%,显微硬度与弹性模量的比值依次由20.50%提高至31.88%;冷敲花键性能层是一种沿花键表层至芯部,以及沿齿顶、齿侧、齿根方向的空间梯度性能层。得到了该性能层加载-位移曲线以及显微硬度力学模型,该力学模型与其结构组织密切相关。

 The distribution of mechanical performance and the related mechanical model of high speed cold roll-beating spline were studied. Based on the existing researches, the region of performance layer for spline was determined, and regions of test points were determined. Then, the nanoindentation tests were conducted by nanoindentation technique, and the load displacement curves, microhardness distribution curves and elastic modulus distribution curves were obtained. Furthermore, the wear resistance of performance layer was studied by analyzing the ratio of microhardness and elastic modulus. The results show that the microhardness increases from 15.83% to 36.11% from the tooth top to the tooth roof away from the spline surface of 80 μm, and the ratio of microhardness and elastic modulus increases from 20.50% to 31.88%. However, the performance layer belongs to a spatial gradient performance layer, which is along the tooth top, the tooth flank to the tooth root and along the spline surface to the core. In addition, the mechanical models of loading displacement curve and the microhardness are obtained, which is closely related to the microstructure.

基金项目:
国家自然科学基金资助项目(51475316);山西省重点学科建设经费资助
作者简介:
作者简介:牛婷(1986-),女,博士研究生 E-mail:niuting861010@163.com 通讯作者:李永堂(1957-),男,博士,教授 E-mail:liyongtang@tyust.edu.cn
参考文献:

 
[1]李永堂,巨丽,牛婷,等. 齿形轴类件冷体积成形研究现状及发展趋势
[J]. 太原科技大学学报,2015,36(3):165-169.


 

Li Y T, Ju L, Niu T,et al. Research status and development trend on cold forming of tooth-like shaft parts
[J]. Journal of Taiyuan University of Science and Technology, 2015,36(3):165-169.

 


[2]冯文杰,付森涛,夏泽雨,等. 基于数值模拟的齿轮冷精整齿向精度预测
[J]. 锻压技术,2016,41(1):52-56.

 

Feng W J,Fu S T,Xia Z Y,et al. Accuracy prediction of gear direction in cold sizing based on numerical simulation
[J]. Forging & Stamping Technology,2016,41(1):52-56.

 


[3]赵晨阳,李洪波,韩金成,等.花键轮精密锻造成形的数值模拟及实验研究
[J]. 锻压技术,2016,41(1):11-15.

 

Zhao C Y,Li H B,Han J C,et al. Numerical simulation and experimental research on precision forging for spline gear
[J]. Forging & Stamping Technology,2016,41(1):11-15.

 


[4]项舰,刘志奇,李永堂,等. 大模数花键冷敲成形质量实验研究
[J]. 太原科技大学学报,2015,36(3):180-183.

 

Xiang J, Liu Z Q, Li Y T,et al. Research on forming quality of large module spline by cold rolling
[J]. Journal of Taiyuan University of Science and Technology, 2015,36(3):180-183.

 


[5]张泰华,杨业敏. 纳米硬度技术的发展和应用
[J]. 力学进展,2002,32(3):349-364.

 

Zhang T H, Yang Y M. Developments and applications of nano-hardness techniques
[J]. Advances in Mechanics, 2002, 32(3):349-364.

 


[6]Chen J, Gu X L, Tang Q,et al. Nanomechanical properties of graphene on poly (ethylene terephthalate) substrate
[J]. Science Direct, 2013,55:144-150.

 


[7]黎业生,李洪,马永红,等. 用纳米压痕仪测量Cu50Zr43Ti7非晶合金的硬度和弹性模量
[J]. 稀有金属材料与工程,2009,38(1):147-150.

 

Li Y S, Li H, Ma Y H,et al. Measurements of hardness and elastic modulus by nanoindenter for Cu50Zr43Ti7 amorphous alloy
[J]. Rare Metal Materials and Engineering, 2009,38(1):147-150.

 


[8]靳巧玲,李国禄,王海斗,等. 纳米压痕技术在材料力学中的应用
[J]. 表面技术,2015,44(12):127-137.

 

Jin Q L, Li G L, Wang H D,et al. Application of the nanoindentation technique in material mechanics test
[J]. Surface Technology, 2015,44(12):127-137.

 


[9]Li X D, Bhushan B. A review of nanoindentation continuous stiffiness measurement technique and its applications
[J]. Materials Characterization, 2002,48(1):11-36.

 


[10]曹丽琴. 钛合金表面氮化层激光辅助制备及其力学性能研究
[D]. 上海:华东理工大学,2010.

 

Cao L Q. Laser Gas Nitriding of Titanium Alloy and Analysis of Mechanical Properties
[D]. Shanghan: Huadong University of Science and Engineering, 2010.

 


[11]马增胜. 纳米压痕法表征金属薄膜材料的力学性能
[D]. 湘潭:湘潭大学,2011.

 

Ma Z S. Characterization of the Mechanical Properties of Metallic Films by Nanoindentation Method
[D]. Xiangtan: University of Xiangtan, 2011.

 


[12]Cole D P, Bruck H A, Roytburd A L. Nanoindentation studies of graded shape memory alloy thin films processed using diffusion modification
[J]. J. Appl. Phys., 2008,103(6): 0643151-0643154.

 


[13]Chudoda T, Schwarzer N, Linss V,et al. Determination of mechanical properties of graded coatings using nanoindenation
[J]. Thin Solid Films, 2004,469-470:239-247.

 


[14]Choi I S, Detor A J, Schwaiger R,et al. Mechanics of indentation of plastically graded materialsii: experiments on nanocrystalline alloys with grain size gradients
[J]. Journal of the Mechanics and Physics of Solids, 2008,56(1):232-237.

 


[15]Wen S P, Zong R L, Zeng F. Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers
[J]. Appl. Surf. Sci., 2009,225(8):4558-4562.

 


[16]Leyland A, Matthews A. On the siginificance of the H/E ratio in wear control: a nanocomposite approach to optimized tribological behavior
[J]. Wear, 2000,246(1-2):1-11.

 


[17]Chollacoop N, Dao M, Suresh S. Deph-sensing instrumented indentation with dual sharp indenters
[J]. Acta Mater., 2003,51(13):3713-3729 

 


[18]Cao Y P,  Lu J. A new scheme for computational modeling of conical indentation in plastically graded materials
[J]. J. Mater. Res., 2004,19 (6):1703-1716.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9