摘要:
|
在薄壁圆管斜壁上进行普通冲孔时,很难做到孔的轴线与斜面完全垂直,且制件表面和冲孔断面质量难以保证。进行了铝合金管缩口-冲孔复合电磁成形试验研究,分析了成形质量和断口形貌。结果表明,磁脉冲缩口-冲孔过程是在高速率变形的惯性和模具复合作用下实现的,高速率缩口变形对冲孔过程起决定作用。在9 kV下实现管端电磁缩口,而在15.5 kV下实现全部冲孔。缩口变形对应的放电参数显著低于缩口-冲孔参数,越靠近缩口变形区端部,冲孔所需放电参数越高。与准静态钢模缩口、软模冲孔相比,电磁缩口-冲孔制件表面质量高,断口塌角高度占原始壁厚40%、毛刺高度约0.05 mm,断面与缩口变形区母线近似垂直。断口内光亮带和剪裂带分界线齐整,剪裂带韧窝密集。
|
When punch is carried out on the sloping wall of the thin-walled tube, it is difficult to make the axis of punched hole completely perpendicular to the inclined wall, and the surface of part and the punching section are of poor quality. The necking-punching compound electromagnetic forming (EMF) on aluminum alloy tube was studied by experiments, and the forming quality and punching fracture were observed and evaluated. The result shows that the necking-punching compound electromagnetic forming (EMF) process is realized under the compound effect of the inertia from high rate of deformation and die, and the necking deformation under high rate plays decisive role on the punching. Therefore, the tube end necking is realized under the voltage of 9 kV by EMF, and the punching is conducted entirely under the voltage of 15.5 kV. Furthermore, the discharge voltage for tube end necking is obviously lower than that of necking-punching, and the closer to the outer end of the necking zone is, the higher discharge voltage is for the hole punching. Compared with the quasi static tube end necking with steel die and the punching with soft die, the surface quality of necking-punching part through EMF is higher, the fillet region is 40% of initial thickness of the tube wall, the height of burr is about 0.05 mm, and the cross section is almost perpendicular to the busbar of necking zone. The boundary between bright zone and the fracture zone is regular, and the dimple is denser in the fracture zone.
|
基金项目:
|
国家自然科学基金资助项目(51475122,51675128)
|
作者简介:
|
作者简介:陈文韬(1997-),男,本科
E-mail:cwt970228@163.com
通讯作者:于海平(1974-),男,博士,副教授,博士生导师
E-mail:haipingy@hit.edu.cn
|
参考文献:
|
[1]方春平, 王文平, 龙安林, 等.电磁成形数值模拟技术研究及应用 [J].塑性工程学报, 2016, 23(2): 62-68.
Fang C P, Wang W P, Long A L, et al. Research and application of numerical simulation technology for electromagnetic forming [J]. Journal of Plasticity Engineering, 2016, 23(2): 62-68.
[2]庞桂兵, 张赟阁, 赵益昕, 等.高速率成形技术进展 [J].大连工业大学大学学报, 2014, 33(5): 381-386.
Pang G B, Zhang Y G, Zhao Y X, et al. Advance in high speed forming technology [J]. Journal of Dalian Polytechnic University, 2014, 33(5): 381-386.
[3]郝晶. 液压冲孔与翻边复合工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013.
Hao J. Research on Hydropiercing-flanging [D]. Harbin: Harbin Institute of Technology, 2013.
[4]腾娜, 王强, 蔡冬梅. 内高压成形与液压冲孔技术 [J]. 机械设计, 2008, (8): 90-92.
Teng N, Wang Q, Cai D M. Numerical simulation on hydropiercing process based on internal high pressure forming [J]. Journal of Machine Design, 2008, (8): 90-92.
[5]Lange K. 25 years of research and development at the institute for forming technology in stuttgart [J]. Blech Rohre Profile, 1988, 35(10): 803-808.
[6]Tamnane A A, Vohnout V J, Padmanaghan M, et al. Opportunities in the high velocity forming of sheet metal [J]. Metal Forming, 1997, (1):42-49.
[7]李春峰, 于海平.电磁成形技术理论研究进展 [J].塑性工程学报,2005, 12(5): 1-7.
Li C F,Yu H P. State of the art of study of electromagnetic forming theory [J]. Journal of Plasticity Engineering,2005, 12(5): 1-7.
[8]苏红亮,黄亮,李建军,等.推进剂贮箱零件侧翻孔电磁成形数值模拟 [J].锻压技术, 2016, 41(12): 53-61.
Su H L, Huang L, Li J J, et al. Numerical simulation on the side hole flanging electromagnetic forming for propellant tank parts [J]. Forging & Stamping Technology, 2016, 41(12): 53-61.
[9]邹方利,黄尚宇,雷雨,等.整体壁板的电磁局部加载成形 [J].锻压技术, 2016, 41(8): 70-74.
Zou F L, Huang S Y, Lei Y, et al. Local-loading electromagnetic forming of integral pane [J]. Forging & Stamping Technology, 2016, 41(8): 70-74.
[10]Zhao Q J, Wang C J, Yu H P, et al. Micro bulging of thin T2 copper sheet by electromagnetic forming [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(31): 461-464.
[11]Iriondo E, Gutierrez M A, Gonzalez B, et al. Electromagnetic impulse calibration of high strength sheet metal structures [J]. Journal of Materials Process Technology, 2011, 211(5): 909-915.
[12]于海平. 管件电磁缩径失稳判据及变形分析 [D]. 哈尔滨: 哈尔滨工业大学, 2016.
Yu H P. Buckling Criterion and Deformation Analysis of Electromagnetic Tube-compression [D]. Harbin: Harbin Institute of Technology, 2016.
[13]于海平,徐志丹,李春峰,等.3A21铝合金-20钢管磁脉冲连接实验研究 [J]. 金属学报, 2011, 2(2): 197-202.
Yu H P, Xu Z D, Li C F, et al. Experimental research on magnetic pulse joining of 3A21 aluminum alloy-20 steel tubes [J]. Acta Metallurgica Scinica, 2011, 2(2): 197-202.
[14]Yu H P, Fan Z S, Li C F. Magnetic pulse cladding of aluminum alloy on mild steel tube [J]. Journal of Materials Processing Technology, 2014, 214(2): 141-150.
[15]李春峰. 电磁成形 [M]. 北京: 科学出版社, 2016.
Li C F. Electromagnetic Forming [M]. Beijing: Science Press, 2016.
[16]欧阳伟, 黄尚宇.电磁成形技术的研究与应用 [J].塑性工程学报, 2005, 12(3): 36-38.
Ouyang W, Huang S Y. Research and application of electromagnetic forming [J]. Journal of Plasticity Engineering,2005,12(3): 36-38.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|