网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ag-Cu钎料粉末压制致密化行为
英文标题:Densification behavior of powder pressing for Ag-Cu solder
作者:刘运展 胡建华 黄尚宇 胡飞 丁鹏飞 李鑫 
单位:武汉理工大学 
关键词:Ag-Cu钎料 粉末压制 EDEM 离散元 压坯致密度 数值模拟 
分类号:TF124
出版年,卷(期):页码:2018,43(4):76-82
摘要:

采用离散元软件EDEM,基于Hysteretic Spring接触模型,对BAg72Cu28和BAg47Cu53钎料压制成形过程进行模拟,并对BAg47Cu53钎料进行低速压制实验。分析了钎料压制的成形机理、速度场特性及压制速度、摩擦系数对压坯致密度的影响。结果表明:压制初期上部粉末速度最大,压制中后期中部粉末速度最大,压坯致密度分布特性与中后期速度场特性一致;压制相同致密度的压坯,高速压制比低速压制的致密度均匀性更高;颗粒间摩擦系数越低,压坯致密度均匀性越高,相同压制力下摩擦系数越低,压坯致密度越高;除松装状态下,BAg47Cu53钎料低速压制的压坯致密度的模拟值与实验值误差小于6%,Hysteretic Spring接触模型进行钎料压制模拟具有较高的模拟精度。

Based on Hysteretic Spring contact model, the pressing process of BAg72Cu28 and BAg47Cu53 solder was simulated by discrete element software EDEM, and the pressing experiments at low speed of BAg47Cu53 solder were carried out. Then, the influences of forming mechanism, characteristics of velocity field, pressing speed and friction coefficient of solder pressing on the density of compaction were analyzed. The results show that the velocity of top powder is the biggest in the early stage of pressing, while the velocity of middle powder is the biggest in the middle and late stages of pressing. The density distribution characteristics of compaction are in agreement with the velocity field characteristics in the middle and late stages. The density uniformity of compaction in high speed pressing is better than that in low speed pressing when pressing the same density of compaction. But the lower the friction coefficient between particles is, the higher the density uniformity of compaction is. And, the lower the friction coefficient under the same pressing force is, the higher the density of compaction is. In addition to the loose state, the density difference of compaction between simulation and experiment in low speed pressing of BAg47Cu53 solder is less than 6%, and the Hysteretic Spring contact model has higher simulation accuracy for solder pressing simulation.
 

基金项目:
国家自然科学基金资助项目(51475345);华中科技大学材料成形与模具技术国家重点实验室开放基金(P2015-01)
作者简介:
刘运展(1993-),男,硕士研究生;E-mail:453178919@qq.com;通讯作者:胡建华(1966-),男,博士,副教授;E-mail: hujianhua@whut.edu.cn
参考文献:

[1]Watanabe T, Yanagisawa A, Sasaki T. Development of Ag based brazing filler metal with low melting point[J]. Science and Technology of Welding & Joining, 2011, 16(6): 502-508.


[2]张启运,庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2008.


Zhang Q Y, Zhuang H S. Braze Welding Manual[M]. Beijing: China Machine Press, 2008.


[3]张亮, Tu King Ning, 陈信文,. 近十年中国无铅钎料研究进展[J]. 中国科学: 技术科学, 2016, 46(8):767-790.


Zhang L, Tu King Ning, Chen X W, et al. Development of lead-free solders in China during the past decade[J]. Scientia Sinica Technologica, 2016, 46(8): 767-790.


[4]许兰娇, 黄尚宇, 郑菲, . 基于电磁压制的Ag-Cu-Ge钎料合金成形工艺[J]. 锻压技术,2017,42(9):63-68.


Xu L J, Huang S Y, Zheng F, et al. Forming process of brazing alloy Ag-Cu-Ge based on electromagnetic compaction[J]. Forging & Stamping Technology, 2017, 42(9):63-68.


[5]李海红, 张士宏, 陈岩, . 稀土精炼紫杂铜组织和性能的研究[J]. 稀有金属,2016,40(1):48-56.


Li H H, Zhang S H, Chen Y, et al. Microstructure and properties of impure red-coppers refined by rare earths[J]. Chinese Journal of Rare Metals, 2016, 40(1):48-56.


[6]胡建华, 尚会森, 程呈, .金属粉末压制成形理论与工艺进展[J].热加工工艺,2012, 41(20):45-48.


Hu J H, Shang H S, Cheng C, et al. Research progress of metal powder compression theory and technology[J]. Hot Working Technology, 2012, 41(20):45-48.


[7]孟正华,黄尚宇,常宏,. 线圈及集磁器结构对陶瓷粉末电磁压制的影响[J]. 锻压技术,2006, 31(4):138-140+144.


Meng Z H, Huang S Y, Chang H, et al. Effects of coil and field shaper structure on electromagnetic compaction of ceramic powder.[J]. Forging & Stamping Technology, 2006, 31(4):138-140+144.


[8]赵剑峰,马智勇,谢德巧,. 金属增材制造技术[J]. 南京航空航天大学学报,2014,46(5):675-683.


Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5):675-683.


[9]林鑫,黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学,2015,45(9):1111-1126.


Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica Informationis, 2015,45(9):1111-1126.


[10]Martin C L, Bouvard D. Study of the cold compaction of composite powders by the discrete element method[J]. Acta Materialia, 2003, 51(2):373-386.


[11]曹秒艳,李建超,苑亚宁,. 基于DEM-FEMAZ31B板材软模成形极限预测[J]. 中国有色金属学报,2017, 27(4):675-683.


Cao M Y, Li J C, Yuan Y N, et al. Forming limit prediction in flexible die forming of AZ31B sheet based on combination of DEM-FEM[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4):675-683.


[12]王爽. 离散单元法在金属粉末高速压制成形过程中的应用研究[D]. 长沙:中南大学,2012.


Wang S. Application Research of Discrete Element Method in Metal Powder High Velocity Compaction[D]. Changsha: Central South University, 2012.


[13]王国强,郝万军,王继新.离散单元法及其在EDEM上的实践[M]. 西安:西北工业大学出版社,2010.


Wang G Q, Hao W J, Wang J X. Discrete Element Method and Its Practice on EDEM[M]. Xi′an: Northwestern Polytechnic University Press, 2010.


[14]Walton O R. Review of adhesion fundamentals for micron-scale particles[J]. Powder & Particle, 2008, 26(1):129-141.


[15]Ai J, Chen J F, Rotter J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3):269-282.


[16]胡国明. 颗粒系统的离散元素法分析仿真:离散元素法的工业应用与EDEM软件[M].武汉:武汉理工大学出版社, 2010.


Hu G M. Discrete Element Analysis Simulation of Granular System: Industrial Application of Discrete Element Method and EDEM Software[M]. Wuhan: Wuhan University of Technology Press, 2010.


[17]郑洲顺,徐勤武,朱远鹏,. 金属粉体高速压制成形过程的应力-应变曲线特征分析[J]. 中国有色金属学报,2011, 21(4):888-893.


Zheng Z S, Xu Q W, Zhu Y P, et al. Characteristics analysis of stress-strain curves of metal powers during high velocity compaction process[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4):888-893.


[18]Zhang Y X, An X Z, Zhang Y L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction[J]. Applied Physics A, 2015, 118(3):1015-1021.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9