[1]Watanabe T, Yanagisawa A, Sasaki T. Development of Ag based brazing filler metal with low melting point[J]. Science and Technology of Welding & Joining, 2011, 16(6): 502-508.
[2]张启运,庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2008.
Zhang Q Y, Zhuang H S. Braze Welding Manual[M]. Beijing: China Machine Press, 2008.
[3]张亮, Tu King Ning, 陈信文,等. 近十年中国无铅钎料研究进展[J]. 中国科学: 技术科学, 2016, 46(8):767-790.
Zhang L, Tu King Ning, Chen X W, et al. Development of lead-free solders in China during the past decade[J]. Scientia Sinica Technologica, 2016, 46(8): 767-790.
[4]许兰娇, 黄尚宇, 郑菲, 等. 基于电磁压制的Ag-Cu-Ge钎料合金成形工艺[J]. 锻压技术,2017,42(9):63-68.
Xu L J, Huang S Y, Zheng F, et al. Forming process of brazing alloy Ag-Cu-Ge based on electromagnetic compaction[J]. Forging & Stamping Technology, 2017, 42(9):63-68.
[5]李海红, 张士宏, 陈岩, 等. 稀土精炼紫杂铜组织和性能的研究[J]. 稀有金属,2016,40(1):48-56.
Li H H, Zhang S H, Chen Y, et al. Microstructure and properties of impure red-coppers refined by rare earths[J]. Chinese Journal of Rare Metals, 2016, 40(1):48-56.
[6]胡建华, 尚会森, 程呈, 等.金属粉末压制成形理论与工艺进展[J].热加工工艺,2012, 41(20):45-48.
Hu J H, Shang H S, Cheng C, et al. Research progress of metal powder compression theory and technology[J]. Hot Working Technology, 2012, 41(20):45-48.
[7]孟正华,黄尚宇,常宏,等. 线圈及集磁器结构对陶瓷粉末电磁压制的影响[J]. 锻压技术,2006, 31(4):138-140+144.
Meng Z H, Huang S Y, Chang H, et al. Effects of coil and field shaper structure on electromagnetic compaction of ceramic powder.[J]. Forging & Stamping Technology, 2006, 31(4):138-140+144.
[8]赵剑峰,马智勇,谢德巧,等. 金属增材制造技术[J]. 南京航空航天大学学报,2014,46(5):675-683.
Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5):675-683.
[9]林鑫,黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学,2015,45(9):1111-1126.
Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica Informationis, 2015,45(9):1111-1126.
[10]Martin C L, Bouvard D. Study of the cold compaction of composite powders by the discrete element method[J]. Acta Materialia, 2003, 51(2):373-386.
[11]曹秒艳,李建超,苑亚宁,等. 基于DEM-FEM的AZ31B板材软模成形极限预测[J]. 中国有色金属学报,2017, 27(4):675-683.
Cao M Y, Li J C, Yuan Y N, et al. Forming limit prediction in flexible die forming of AZ31B sheet based on combination of DEM-FEM[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4):675-683.
[12]王爽. 离散单元法在金属粉末高速压制成形过程中的应用研究[D]. 长沙:中南大学,2012.
Wang S. Application Research of Discrete Element Method in Metal Powder High Velocity Compaction[D]. Changsha: Central South University, 2012.
[13]王国强,郝万军,王继新.离散单元法及其在EDEM上的实践[M]. 西安:西北工业大学出版社,2010.
Wang G Q, Hao W J, Wang J X. Discrete Element Method and Its Practice on EDEM[M]. Xi′an: Northwestern Polytechnic University Press, 2010.
[14]Walton O R. Review of adhesion fundamentals for micron-scale particles[J]. Powder & Particle, 2008, 26(1):129-141.
[15]Ai J, Chen J F, Rotter J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3):269-282.
[16]胡国明. 颗粒系统的离散元素法分析仿真:离散元素法的工业应用与EDEM软件[M].武汉:武汉理工大学出版社, 2010.
Hu G M. Discrete Element Analysis Simulation of Granular System: Industrial Application of Discrete Element Method and EDEM Software[M]. Wuhan: Wuhan University of Technology Press, 2010.
[17]郑洲顺,徐勤武,朱远鹏,等. 金属粉体高速压制成形过程的应力-应变曲线特征分析[J]. 中国有色金属学报,2011, 21(4):888-893.
Zheng Z S, Xu Q W, Zhu Y P, et al. Characteristics analysis of stress-strain curves of metal powers during high velocity compaction process[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4):888-893.
[18]Zhang Y X, An X Z, Zhang Y L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction[J]. Applied Physics A, 2015, 118(3):1015-1021.
|