网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
重载机械手旋转驱动系统的预测控制
英文标题:Predictive control of rotating drive system with heavy-load manipulator
作者:吴贤斌 李群明 邓华 
单位:高性能复杂制造国家重点实验室 中南大学 
关键词:重载机械手 旋转驱动系统 模型预测控制 拓展卡尔曼滤波 精度控制 电液伺服 
分类号:TG315; TH137.5
出版年,卷(期):页码:2018,43(4):112-117
摘要:

针对重载机械手旋转驱动系统受固有非线性摩擦的影响而位置控制精度不高的问题,基于系统的状态空间模型,结合模型预测控制(MPC)、拓展卡尔曼滤波(EKF)和二次优化算法,提出一种基于卡尔曼滤波的模型预测控制方法。通过模型预测控制(MPC)能够实现约束条件下的精确控制,通过拓展卡尔曼滤波(EKF)能够避免模型误差的影响,提高了系统的鲁棒性;通过二次优化算法能够高效求出局部最优解。仿真结果表明,所设计的控制策略在快速性和稳定性方面都优于传统PID控制。实验结果表明该控制策略是有效的,能显著提高重载机械手旋转驱动系统的位置控制精度。
 

For the problem of the low position control precision of rotary drive system for heavy-load manipulator resulting from inherent nonlinear friction, based on the state space model of system, a predictive control method for model based on Kalman filter was proposed by combining with model predictive control (MPC), extended Kalman filter (EKF) and quadratic optimization algorithm. Then, the precise control under constraint conditions was realized by the model predictive control (MPC). And the impact of model error was avoided by the extended Kalman Filter (EKF) which improves the system robustness. Furthermore, the local optimal solution was calculated efficiently by the quadratic optimization algorithm. The simulation results show that the designed control strategy is superior to the traditional PID control in terms of fastness and stability. And the experimental results show that the control strategy is effective and can improve the position control precision of rotary drive system for heavy-load manipulator significantly.

基金项目:
国家973计划项目(2006CB705404)
作者简介:
吴贤斌(1992-),男,硕士研究生;E-mail:1055644410@qq.com;通讯作者:邓华(1961-),男,博士,教授;E-mail:hdeng@csu.edu.cn
参考文献:

[1]Ding W H, Deng H, Hu J M. Kinematic modeling of a heavy-duty forging manipulator[A]. International Conference on Intelligent Robotics & Applications[C]. Montreal, QC, Canada, 2012.


[2]吴炎林, 向华, 庄新村,. 基于BP神经网络精冲塌角高度的预测[J]. 塑性工程学报, 2017, 24(6): 32-37.


Wu Y L, Xiang H, Zhuang X C, et al. Prediction of fine blanking die-roll height based on BP artificial neural networks[J] .Journal of Plasticity Engineering , 2017, 24(6): 32-37.


[3]Duan X G, Li H X, Deng H. A simple tuning method for fuzzy PID control[A]. IEEE International Conference on Fuzzy Systems[C]. Hong Kong, China, 2008.


[4]Guan C, Pan S. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters[J]. Control Theory & Applications, 2008, 16(11):1275-1284.


[5]Niksefat N, Sepehri N. Design and experimental evaluation of a robust force controller for an electro-hydraulic actuator via quantitative feedback theory[J]. Control Engineering Practice, 2000, 8(12):1335-1345.


[6]席裕庚, 耿晓军, 陈虹. 预测控制性能研究的新进展[J]. 控制理论与应用, 2000, 17(4):469-475.


Xi Y G, Geng X J, Chen H. Recent advances in research on predictive control performance[J]. Control Theory and Applications, 2000, 17 (4): 469-475.


[7]Peng H, Shioya H, Peng X, et al. Nonlinear MPC based on the state-space form of RBF-ARX model[A]. IEEE International Conference on Control Applications[C]. Taipei, Taiwan, China, 2004.


[8]候帅, 雷晓顺, 王柯,. 基于LQR的电液比例溢流加载系统PID控制器设计[J]. 流体传动与控制, 2016, (4):10-12.


Hou S, Lei X S, Wang K, et al. Design of PID controller for electro-hydraulic proportional overflow loading system based on LQR [J]. Fluid Power Transmission and Control, 2016, (4): 10-12.


[9]尹凯, 丁文华, 段小刚,. 基于扩展卡尔曼滤波的锻造操作机夹钳旋转系统的负载压力估计[J]. 锻压技术, 2016, 41(7):62-66.


Yin K, Ding W H, Duan X G, et al. Pressure estimation on gripper rotation system for forging manipulatorbased on extended kalman filter [J]. Forging Stamping Technology, 2016, 41 (7): 62-66.


[10]Speicher K, Steinboeck A, Kugi A, et al. Analysis and design of an extended Kalman filter for the plate temperature in heavy plate rolling[J]. Journal of Process Control, 2014, 24(9):1371-1381.


[11]胡仲瑞. 输入约束条件下模型预测控制算法研究[D].大庆:东北石油大学,2013.


Hu Z R. Algorithm Study on Input Constrained Model Predictive Control[D]. Daqing: Northeast Petroleum University, 2013.


[12]Lawrynczuk M. Approximate state-space model predictive control[A]. International Conference on Methods & Models in Automation and Robotics[C]. Miedzyzdroje, Poland, 2015.


[13]熊志林, 陶建峰, 张峰榕,. 采用状态估计的泵控非对称液压缸模型预测控制[J]. 西安交通大学学报, 2017, 51(4):109-115.


Xiong Z L, Tao J F, Zhang F R, et al. A model predictive control strategy of pump-controlled asymmetric cylinders using state estimation [J]. Journal of Xi′an Jiaotong University, 2017, 51 (4): 109-115.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9