网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于机器视觉的锻件位置及顶杆检测系统
英文标题:Detection system of forging position and ejector based on machine vision
作者:凌云汉1 邵光保2 孙勇1 蒋鹏1 姚宏亮1 苏子宁1 
单位:(1.北京机电研究所有限公司 北京 100083 2. 湖北三环锻造有限公司 湖北 谷城 441700) 
关键词:机器视觉 锻造自动化 工业相机 位置检测 顶杆检测 
分类号:TP23
出版年,卷(期):页码:2018,43(5):0-0
摘要:

 现阶段我国大部分锻造自动化生产线在锻件加工过程中由于受到粘模、顶杆不能收回等风险因素的制约,在工件加工之前往往需要人工判断工件位置是否满足继续加工条件。针对这一问题,提出一种基于机器视觉的锻件位置检测系统,利用工业CCD相机替代人眼来判断工件位置是否满足机器人抓取或压力机塑性成形的要求。阐述了检测系统的硬件组成、检测原理和检测算法研究,设计了一种可以检测非刚性连接的液压下顶料杆是否收回的方法。实验结果表明,检测系统单次检测时间小于500 ms,无漏判,误判率不超过2%,并对误判结果的产生原因进行分析。系统具有高检测速度和高准确率的特点,检测系统投入运行后可减少操作人员2~3人。

 At present, most of forging automation production lines in China are restricted by the risk factors that sticking and ejector cannot be recovered during the forging process, and it is often necessary to manually judge whether the workpiece position satisfies the continuous processing conditions before machining. To solve this problem, a forging location detection system based on machine vision was proposed, and the industrial CCD camera was used to replace the human eye to determine whether the workpiece position met the requirements of plastic grasping for robot grabbing or pressing machine. Then, the hardware composition, detection principle and detection algorithm of the detection system were described, and a method for detecting whether the hydraulic ejector bar could be recovered without rigid connections designed. The experimental results show that the single detection time of the detection system is less than 500 ms which has no missing result, and the error rate is less than 2%. Furthermore, the causes of false results were analyzed. And the system is of high detection speed and high rate of accuracy. Finally, by applying the above system, the number of detection operators reduces 2-3.

基金项目:
2015年智能制造新模式应用(工业和信息化部[2015]354号)
作者简介:
作者简介:凌云汉(1990-),男,硕士研究生 Email:424212121@qq.com 通讯作者:孙勇(1971-),男,博士,研究员 Email:sun_yong_89@163.com
参考文献:

 
[1]陈裕潮,蔡念,刘根,等. 一种基于机器视觉的轮胎模具表面字符检测方法
[J]. 锻压技术,2016,41(12):127-130.


Chen Y C, Cai N, Liu G,et al. A character inspection method on tire mould surface based on machine vision
[J]. Forging & Stamping Technology, 2016,41(12):127-130.


[2]阎镭,梁冬泰,向桂山,等. 机器视觉在自动化生产线状态检测与故障诊断中的应用
[J]. 液压与气动,2006,(12):65-68.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9