网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
5A06合金高温塑性变形行为
英文标题:Plastic deformation behavior of alloy 5A06 at high temperature
作者:欧玲 浦荣 曾方欣 聂宇峰 阳建君 
单位:湖南工业大学 
关键词:5A06合金 高温塑性变形行为 加工图 本构方程 流变应力 
分类号:TG146.2
出版年,卷(期):页码:2018,43(6):123-128
摘要:

在Gleeble-1500热模拟试验机上进行高温等温压缩试验,研究了5A06合金在变形温度为320~440 ℃,变形速率为0.3,1.0和10s-1条件下的高温塑性变形行为。计算材料的特征参数并导入双曲正弦形式的Arrhenius方程,获得了以Zener-Hollomon参数表示的本构方程,建立了流变应力与变形温度、变形速率之间的关系,为该合金热加工工艺的制定提供指导,同时得出该合金的热变形激活能为154.2 kJ·mol-1。利用DMM加工图理论与Prasad失稳准则,通过叠加功率耗散图与失稳图绘制出不同变形程度下5A06合金的加工图。随着变形程度的增大,加工图中的失稳区增大。在安全加工区域内,变形速率为5~10 s-1时功率耗散率值最大,为32%~38%,是最佳的热加工区间。

The high temperature isothermal compressive experiments of alloy 5A06 were conducted by thermal simulation machine Gleeble-1500, and its plastic deformation behavior at high temperature was studied at deformation temperature 320-440 ℃, deformation rates 0.3, 1.0 and 10 s-1 respectively. Then, the characteristic parameters of the material were calculated and imported into the Arrhenius equation of the hyperbolic sine to obtain an constitutive equation represented by the ZenerHollomon parameter,and the relationship among the flow stress, deformation temperature and deformation rate was established to provide guidance for the formulation of hot working process. At the same time, it was concluded that the activation energy Q was 154.2 kJ·mol-1. Furthermore, according to the theory of DMM machining graph and the failure stability criterion of Prasad, the processing maps were drawn by superimposing the power dissipation map and the instability map under different deformation conditions. With the increase of deformation, the instability area increases. Thus, in the safe processing area, the efficiency of power dissipation is up to the maximum 32%-38% at the deformation rates 5-10 s-1, which is the best machining area.

基金项目:
湖南省自然科学基金资助项目(2018JJ3121);2016年度湖南省教育厅科学研究项目(16C0460)
作者简介:
欧玲(1982-),女,讲师,博士;Email:ouling24@126.com;通讯作者:聂宇峰(1980-),男,硕士,讲师;Email: aurberon@126.com
参考文献:


[1]付锦, 戚文军, 李亚江,等. Al-Mg-Si系铝合金汽车车身板的研究进展
[J]. 材料研究与应用, 2016, 10(3):159-166.


Fu J, Qi W J, Li Y J, et al. Research and development of AlMgSi alloys in application of automotive body panel
[J]. Materials Research and Application, 2016, 10(3):159-166.



[2]王祝堂, 田荣璋. 铝合金及其加工手册
[M].长沙:中南大学出版社, 2000.


Wang Z T, Tian R Z. Aluminum Alloy and Its Processing Manual
[M]. Changsha: Central South University Press, 2000.



[3]何建伟, 王祝堂. 船舶舰艇用铝及铝合金(1)
[J]. 轻合金加工技术, 2015, 43(9):1-11.


He J W, Wang Z T. Aluminum and its alloys for ships and naval vessels (1)
[J]. Light Alloy Fabrication Technology, 2015, 43(9):1-11.



[4]毕宝鹏, 王勇, 孙梦莹. 5A06铝合金超塑性变形力学特性
[J]. 塑性工程学报, 2015, 22(2):62-67.


Bi B P, Wang Y, Sun M Y. Mechanical behavior of aluminum alloy 5A06 under superplastic deformation
[J]. Journal of Plasticity Engineering, 2015, 22(2):62-67.



[5]吴耀金, 张治民. 铝合金LF6变形工艺与微观组织关系的研究
[J]. 热加工工艺, 2006, 35(4):25-27.


Wu Y J, Zhang Z M. Research on relationship of deformation process and microstructure of aluminium alloy LF6
[J]. Hot Working Technology, 2006, 35(4):25-27.



[6]Goswami R, Qadri S B. Suppression of samson phase formation in Al-Mg alloys by boron addition
[J]. Materials Letters, 2017, 200(15):26-27.



[7]Toda H, Yamamoto M, Uyama H, et al. Effect of hydrogel elasticity and ephrinB2-immobilized manner on Runx2 expression of human mesenchymal stem cells
[J]. Acta Biomaterialia, 2017, 58(12):312-322.



[8]Mcqueen H J. Development of dynamic recrystallization theory
[J]. Materials Science & Engineering A, 2004, 387 (1):203-208.



[9]Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hotworking conditions
[J]. International Materials Reviews, 1969, 14(1):1-24.



[10]Shi H, Mclaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys
[J]. Materials Science & Technology, 1997, 13(3):210-216.



[11]Cai J, Li F, Liu T, et al. Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain
[J]. Materials & Design, 2011, 32(3):1144-1151.



[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1):22-32.



[13]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242
[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.



[14]Prasad Y V R K. Author′s reply: Dynamic materials model: Basis and principles
[J]. Metallurgical & Materials Transactions A, 1996, 27(1):235-236.



[15]李庆波, 周海涛, 蒋永峰,等. 加工图的理论研究现状与展望
[J]. 有色冶金设计与研究, 2009, 30(4):1-6.


Li Q B, Zhou H T, Jiang Y F, et al. Research status quo and prospect of the theory of shop drawing
[J]. Nonferrous Metals Engineering & Research, 2009, 30(4):1-6.



[16]Raj R. Development of a processing map for use in warm-forming and hot-forming processes
[J]. Metallurgical Transactions A, 1981, 12(6):1089-1097.



[17]Sivaram K, Prasad Y V R K, Doraivelu S M, et al. Evaluation of optimum deformation processing conditions for two aluminium alloys using efficiency maps
[J]. 1987, 67:69-76.



[18]Prasad Y V R K, Rao K P, Sasidhara S. Hot Working Guide: Compendium of Processing Maps
[M]. United States of America: Advanced Materials & Processes,2015.



[19]Wang C, Yu F, Zhao D, et al. Hot deformation and processing maps of DC cast Al-15%Si alloy
[J]. Materials Science & Engineering A, 2013, 577(11):73-80.



[20]Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps
[J]. Materials Science & Engineering A, 2010, 527(21):5467-5473.



[21]Prasad Y V R K. Recent advances in the science of mechanical processing
[J]. Indian Journal of Technology, 1990, 1(28):435-451.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9