网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
智能锻压设备及其实施途径的探讨
英文标题:Discussion on intelligent forging equipment and approaches of its implementation
作者:赵升吨 张鹏 范淑琴 李靖祥 董朋 王永飞 张海霞 
单位:西安交通大学 
关键词:西安交通大学 
分类号:TG315.9
出版年,卷(期):页码:2018,43(7):32-48
摘要:

介绍了在德国工业4.0和中国制造2025的背景下,国内外制造业和锻压设备面临的问题与挑战。论述了智能制造重点发展的五大领域与10项关键技术,并介绍了21世纪的现代制造模式——“互联网+”协同制造及其重点发展任务。指出了智能工厂的3个重要架构领域,即产品和系统架构、增值和企业架构、数据和信息等组成的IT架构,指出智能机器的三大基本要素,即信息深度自感知、智慧优化自决策、精准控制自执行。讨论了工业1.0到工业4.0这4个不同工业时代的锻压设备及其特点,探讨了智能锻压设备的3个实施途径,即分散多动力、伺服电直驱、集成一体化,阐述了国内外典型智能锻压设备的基本原理、特点及研究现状,分析了交流伺服直驱型压力机、交流伺服直线电机驱动的新型锻锤、伺服直驱冲压生产线、电子飞轮储能系统等智能锻压设备具备的优良特性,并指出了各实施途径需要解决的关键科技问题。

The problems and challenges faced by manufacturing industry and forging equipment were introduced both at home and aboard under the background of Germany Industry 4.0 and Made in China 2025. Then, five areas and ten key technologies prioritized by intelligent manufacturing were discussed, and the “Internet+” Collaborative Production Commerce, which was the 21st century modern manufacturing mode, and its key development tasks were introduced. Furthermore, three important architectures of intelligent plant were pointed out including product and system architecture, value-added and enterprise architecture and IT architecture composed of data and information, and three basic elements of intelligent machines were also pointed out, which were consisted of the information depth for self-perception, intelligent optimization for self-decision making and precise control for self-execution. In addition, the forging equipment and its characteristics in four different eras from Industrial 1.0 to Industrial 4.0 were analyzed, and three approaches to implement intelligent forging equipment including multiple power source, servo motor direct drive and integration were discussed. Finally, the basic principles, characteristics and research status of typical intelligent forging equipment at home and aboard were expounded, and the excellent features of AC servo direct drive presses, new forging hammer driven by AC servo linear motors, servo direct drive stamping production lines, electronic flywheel energy storage systems and other intelligent forging equipments were analyzed, as well as the key scientific and technological problems of each implementation approach were proposed.

基金项目:
国家自然科学基金重点项目(51335009);2015年泰山产业领军人才工程传统产业创新类;智能制造专项(HZ201602);江苏省科技成果转化专项资金项目(BA2015106);陕西省科学技术研究发展计划工业攻关计划(2015GY125)
作者简介:
赵升吨(1962-),男,博士,教授,博士生导师,E-mail:sdzhao@mail.xjtu.edu.cn
参考文献:

[1]丁纯, 李君扬. 德国工业4.0”:内容、动因与前景及其启示[J]. 德国研究, 2014, 29(4):49-66.


Ding C, Li J Y. Germany ‘Industry 4.0’: Content, motivation and prospect and its enlightenment[J]. Deutschland-Studien, 2014, 29(4): 49-66.


[2]潘健生, 王婧, 顾剑锋. 我国高性能化智能制造发展战略研究[J]. 金属热处理, 2015, 40(1):1-6.


Pan J S, Wang J, Gu J F. Study on the development strategy of high performance intelligent manufacturing in China[J]. Heat Treatment of Metals, 2015, 40(1): 1-6.


[3]杜传忠, 杨志坤. 德国工业4.0战略对中国制造业转型升级的借鉴[J]. 经济与管理研究, 2015, 36(7):82-87.


Du C Z, Yang Z K. Inspiration of transforming and upgrading of manufacturing industry in China from German Industry 4.0 stategy[J]. Research on Economics and Management, 2015, 36 (7): 82-87.


[4]刘丹, 王迪, 赵蔷,. “制造强国评价指标体系构建及初步分析[J]. 中国工程科学, 2015, 17(7):96-107.


Liu D, Wang D, Zhao Q, et al. Construction and analysis of manufacturing power evaluation system[J]. Engineering Science, 2015, 17(7): 96-107.


[5]陈超, 赵升吨, 范淑琴, . 4000 kN交流伺服直驱式热模锻压力机[A]. 二次学术交流研讨会[C].青岛, 2014.


Chen C, Zhao S D, Fan S Q, et al. Finite element analysis of the frame of 4000 kN hot die forging press directly driven by AC servo motor[A]. Secondary Academic Exchange Seminar[C].Qingdao,2014.


[6]王玉山. 高端冲压设备——伺服压力机[J]. 金属加工, 2013, (7): 12-13.


Wang Y S. Highlevel stamping equipment-Servo press[J]. Metal Working, 2013, (7): 12-13.


[7]李广娟. 我国冲压设备的发展概况及发展趋势[J]. 青年时代, 2017, (36): 103-104.


Li G J. Development and prospect of stamping equipment in China[J]. Youth Times, 2017, (36): 103-104.


[8]周济. 制造业数字化智能化[J]. 中国机械工程, 2012, 23(20):11-15.


Zhou J. Digitization and intellectualization for manufacturing industries[J]. China Mechanical Engineering, 2013, 23(20): 11-15.


[9]杨帅. 工业4.0与工业互联网:比较、启示与应对策略[J].当代财经,2015, (8):99-107


Yang S. Industry 4.0 and internet industryComparison, enlightenment and countermeasures[J]. Contemporary Finance & Economics, 2015, (8):99-107.


[10]Gruber F E. Industry 4.0: A best practice project of the automotive industry[J]. Digital Product and Process Development Systems,2013, (411): 36-40.


[11]高广波, 侯经川. 工业 4.0 视角下的中国制造业——困境、动力与导向[J]. 理论视野,2015,11):46-48.


Gao G B, Hou J C. Chinese manufacturing industry from the perspective of industry 4.0-Dilemma, dynamics and direction [J]. Theoretical Horizon, 2015, (11):46-48.


[12]刘辛军, 谢福贵, 汪劲松. 当前中国机构学面临的机遇[J].机械工程学报,2015,51(13):2-12.


Liu X J, Xie F G, Wang J S. Current opportunities in the field of mechanisms in China[J]. Journal of Mechanical Engineering, 2015,51(13):2-12.


[13]王守华.蒸汽锤改造为电液锤的应用[J].热加工工艺,201140(19)207-208.


Wang S H. Application of electricity liquid hammer transformed form steam hammer[J]. Casting Forging Welding, 2011, 40(19)207-208.


[14]鲁文其, 胡育文, 黄文新. 基于交流电机重载驱动的复合型伺服压力机[J]. 电机与控制应用, 2008, 35(9):11-14.


Lu W Q, Hu Y W, Huang W X. Investigation of hybrid servo press based on heavyload driving of AC motor[J]. Electric Machines & Control Application, 2008, 35(9):11-14.


[15]郑雄. 伺服压力机控制系统关键技术研究[D]. 武汉:华中科技大学, 2012.


Zheng X. Research of Key Technologies in the Control System of Servo Press[D]. Wuhan: Huazhong University of Science and Technology, 2012.


[16]俞新陆, 俞新. 液压机[M]. 北京:机械工业出版社, 1982.


Yu X L, Yu X. Hydraulic Press[M]. Beijing: China Machine Press, 1982.


[17]姚保森. 我国锻造液压机的现状及发展[J]. 锻压装备与制造技术, 2005, 40(3):28-30.


Yao B S. States and development of Chinese hydraulic forging press[J]. China Metalforming Equipment & Manufacturing Technology, 2005, 40(3):28-30.


[18]王敏. 材料成形设备及自动化[M]. 北京:高等教育出版社, 2010.


Wang M. Material Forming Equipment and Automation [M]. Beijing: Higher Education Press, 2010.


[19]邹军.新型交流伺服直接驱动双点压力机设计理论及其关键技术的研究[D]. 西安:西安交通大学, 2007.


Zou J. Investigation in Design Theory and Key Technology of a New Type of Double Point Press Directly Driven by AC Servomotor[D]. Xi′anXi′an Jiaotong University, 2007.


[20]孙友松, 周先辉, 黎勉,. 交流伺服压力机及其应用[J]. 金属加工, 2008(1-2):93-98.


Sun Y S, Zhou X H, Li M, et al. AC servo press and its application[J]. Metal Working, 2008(1-2):93-98.


[21]赵升吨, 陈超, 崔敏超, .交流伺服压力机的研究现状与发展趋势[J].锻压技术, 2015, 40(2):1-7.


Zhao S D, Chen C, Cui M C, et al. Research status and development tendency of AC servo press[J]. Forging & Stamping Technology, 2015, 40(2):1-7.


[22]Hsieh M F, Tung C J, Yao W S, et al. Servo design of a vertical axis drive using dual linear motors for high speed electric discharge machining[J]. International Journal of Machine Tools & Manufacture, 2007, 47 (3-4): 546-554.


[23]Zheng J M, Zhao S D, Wei S G. Fuzzy iterative learning control of electrohydraulic servo system for SRM directdrive volume control hydraulic press[J]. Journal of Central South University, 2010, 17 (2): 316-322.


[24]国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告:2011-2020[M]. 北京: 科学出版社, 2010.


National Natural Science Foundation of China Engineering and Materials Science. Mechanical Engineering Discipline Development Strategy Report: 2011-2020[M]. Beijing: Science Press, 2010.


[25]Aydin M, Huang S, Lipo T A. Axial flux permanent magnet disc machines: A review[A]. Conf. Record of SPEEDAM[C]. Italy,2004.


[26]Cheng M, Hua W, Zhang J, et al. Overview of statorpermanent magnet brushless machines[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (11): 5087-5101.


[27]赵升吨, 梁锦涛, 赵永强, . 机械压力机伺服直驱式新型永磁电动机的设计与应用研究[J]. 锻压技术, 2014, 39 (4): 59-66.


Zhao S D, Liang J T, Zhao Y Q, et al. Design and applied research on novel permanent magnet motors for servo direct driving mechanical press[J]. Forging & Stamping Technology, 2014, 39 (4): 59-66.


[28]Hlavácˇ J, Cˇechura M. Direct drive of 25 MN mechanical forging press[J]. Procedia Engineering20151001608-1615.


[29]Yoneda T. Development of high precision digital servo press ZENFormerFeatures of direct drive 4axis parallel control system[J]. Journal of the Japan Society of Electricalmachining Engineers20074128-31.


[30]Osakada K, Mori K, Altan T, et al. Mechanical servo press technology for metal forming[J]. CIRP AnnalsManufacturing Technology, 2011, 60(2):651-672.


[31]Mitsantisuk C, Katsura S, Ohishi K. Force control of humanrobot interaction using twin directdrive motor system based on modal space design[J]. Industrial Electronics IEEE on Transactions, 2010, 57 (4): 1383-1392.


[32]Itoh M. Vibration suppression control for a twindrive geared win on study on effects of modelbased system: Simulation control integrated into the position control loop[A]. International Conference on Intelligent Mechatronics & Automation[C]. Chengdu, 2004.


[33]Ohba Y, Ohishi K. A forcereflecting frictionfree bilateral system based on a twin drive control system with torsional vibration suppression[J]. IEEJ Transactions on Industry Applications, 2010, 159 (1): 72-79.


[34]贾先, 赵升吨, 范淑琴, . 新型200 kN双电机螺旋副直驱式回转头压力机运动学和动力学研究[J]. 机械科学与技术, 2017, 36(8):1205-1211.


Jia X, Zhao S D, Fan S Q, et al. Research on kinematics and dynamics of newmode 200 kN doublemotor servo direct driving turret press[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8):1205-1211.


[35]刘福才, 张学莲, 刘立伟.多级电机传动系统同步控制理论与应用研究[J].控制工程, 2002, 9(4)87-90.


Liu F C, Zhang X L, Liu L W. Synchronous control theory and practical study of multimotor synchronous driving system[J]. Control Engineering of China, 2002, 9(4)87-90.


[36]李耿轶, 王宇融.数控机床多轴同步控制方法[J].制造技术与机床, 2000, 454(5)23-25.


Li G Y, Wang Y R. Synchronization control method of multiaxis CNC machine tools[J]. Manufacturing Technology & Machine Tool, 2000, 454(5)23-25.


[37]Bai Y, Gao F, Guo W. Design of mechanical presses driven by multiservomotor[J]. Journal of Mechanical Science and Technology, 2011, 25 (9): 2323-2334.


[38]He J, Gao F, Zhang D. Design and performance analysis of a novel parallel servo press with redundant actuation[J]. International Journal of Mechanics and Materials in Design, 2014, 10 (2): 145-163.


[39]Kwon O S, Choe S H, Heo H. A study on the dualservo system using improved crosscoupling control method[A]. International Conference on Environment & Electrical Engineering[C]. Rome, Italy, 2011.


[40]Hsieh W H, Tsai C H. On a novel press system with six links for precision deep drawing[J]. Mechanism & Machine Theory, 2011, 46 (2): 239-252.


[41]Choi H J. A study on the optimization of a mechanical press drive[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2004, 218 (2): 189-196.


[42]何予鹏, 赵升吨, 杨辉, . 机械压力机低速锻冲机构的遗传算法优化设计[J]. 西安交通大学学报, 2005, 39 (5): 490-493.


He Y P, Zhao S D, Yang H, et al. Optimum design of the mechanical press with lowspeed and stampingpunch mechanism based on genetic algorithm[J]. Journal of Xi′an Jiaotong University, 2005, 39 (5): 490-493.


[43]赵升吨, 张志远, 何予鹏,. 机械压力机交流伺服电动机直接驱动方式合理性探讨[J]. 锻压装备与制造技术, 2004, 39(6):19-23.


Zhao S D, Zhang Z Y, He Y P, et al. Probing into reasonable of direct driving mode of AC servo motor of mechanical press[J]. China Metalforming Equipment & Manufaturing Technology, 2004, 39(6):19-23.


[44]王金娥. 一种新型的直线电机驱动肘杆-杠杆二次增力数控压力机[J]. 机床与液压, 2015, 43(22):12-13.


Wang J E. A novel NC press with togglelever force amplifier driven by linear motor [J]. Machine Tool & Hydraulics, 2015, 43(22):12-13.


[45]Miyoshi K. Current trends in free motion presses[A]. Proceedings of 3rd International Conference on Precision Forging[C]. NagoyaJapan2004.


[46]袁金刚.伺服压力机整机有限元分析与机身的结构优化[D]. 武汉:华中科技大学, 2009.


Yuan J G. Finite Element Analysis of Servo Press Machine and Structural Optimization of Fuselage[D]. Wuhan: Huazhong University of Science and Technology, 2009.


[47]孙友松, 周先辉, 黄开胜,. 交流伺服电机驱动——成形装备发展的新方向[J]. 锻压技术, 2005, 30(Z1):1-6.


Sun Y S, Zhou X H, Huang K S, et al. AC servo motor driving a new developing trend for forming equipment[J]. Forging & Stamping Technology, 2005, 30(Z1):1-6.


[48]吕言, 周建国, 阮澍. 最新伺服压力机的开发以及今后的动向[J]. 锻压装备与制造技术, 2006, 41(1):11-14.


Lyu Y, Zhou J G, Ruan S. The newest development of servo press and future[J]. China Metalforming Equipment & Manufacturing Technology, 2006, 41(1):11-14.


[49]丁雪生. 日本AIDA和山田DOBBY公司的直线电机压力机[J]. 世界制造技术与装备市场, 1999, (3):64-65.


Ding X S. Japanese AIDA and YAMADA DOBBY Co., punch presses using linear motor[J]. World Manufacturing Engineering & Market, 1999, (3):64-65.


[50]张瑞, 赵婷婷, 罗功波. 伺服直驱型电动螺旋压力机的综合刚度分析[J]. 现代制造工程, 2017, (2):142-148.


Zhang R, Zhao T T, Luo G B. The analysis of the synthetical stiffness on the servo direct drive electric screw press[J]. Modern Manufacturing Engineering, 2017, (2):142-148.


[51]徐刚, 崔瑞奇, 王华. 我国金属成形(锻压)机床的现状与发展动向[J]. 锻压装备与制造技术, 2017, 52(3):7-16.


Xu G, Cui R Q, Wang H. Status and developing trend of national metalforming machine tool[J]. China Metalforming Equipment & Manufacturing Technology, 2017, 52(3):7-16.


[52]赵婷婷, 田江涛, 杨思一,. 大重型锻压设备技术发展新动向[A]. 中国机械工程学会年会暨甘肃省学术年会[C]. 兰州,2008.


Zhao T T, Tian J T, Yang S Y, et al. New trend of technological development on the large and heavy forging and forming equipments[A]. Annual Meeting of China Mechanical Engineering Society and Annual Conference of Gansu Province[C]. Lanzhou2008.


[53]Mclallin K, Fausz J. Advanced Energy Storage for NASA and US AF-missions [R]. AFRL/NASN Flywheel Program, 2000.


[54]Koike Y, Fujiki N, Ito Y, et al. Development of an electrically driven intelligent brake system[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 65(1)399-405.


[55]Gee A M, Robinson F V P, Dunn R W. Analysis of battery lifetime extension in a smallscale windenergy system using supercapacitors[J]. IEEE Transactions on Energy Conversion, 2013, 28(1)24-33.


[56]Ibrahim H, Belmokhtar K, Ghandour M. Investigation of usage of compressed air energy storage for power generation system improving-application in a microgrid integrating wind energy[J]. Energy Procedia, 2015, 73305-316.


[57]纪锋, 付立军, 王公宝, .舰船综合电力系统飞轮储能控制器设计[J].中国电机工程学报, 2015, 35(12)2952-2959.


Ji F, Fu L J, Wang G B, et al. Controller design of flywheel energy storage for vessel integrated power systems[J]. Proceedings of the CSEE, 2015, 35(12)2952-2959.


[58]余俊, 张李超, 史玉升, .伺服压力机电容储能系统设计与实验研究[J].锻压技术, 2014, 39(11)47-52.


Yu J, Zhang L C, Shi Y S, et al. Design and experimental research on capacitor energy storage system for servo press[J]. Forging & Stamping Technology, 2014, 39(11)47-52.


[59]韦统振, 吴理心, 韩立博, .基于超级电容器储能的交直交变频驱动系统制动能量综合回收利用方法研究[J].中国电机工程学报, 2014, 34(24)4076-4083.


Wei T Z, Wu L X, Han L B, et al. Research on the integrated braking energy recovery strategy based on supercapacitor energy storage for AC-DC-AC variablefrequency drive[J]. Proceedings of the CSEE, 2014, 34(24)4076-4083.


[60]赵升吨, 梁锦涛, 赵永强, .机械压力机伺服直驱式新型永磁电动机的设计与应用研究[J].锻压技术, 2014, 39(4):59-66.


Zhao S D, Liang J T, Zhao Y Q, et al. Design and applied research on novel permanent magnet motors for servo direct driving mechanical press[J]. Forging & Stamping Technology, 2014, 39(4):59-66.


[61]汤世松, 仲太生, 项余建, . 热模锻压力机生产线控制系统的设计[J].锻压装备与制造技术, 2016, 51(2):44-47.


Tang S S, Zhong T S, Xiang Y J, et al. Design of the control system for hot die forging press production line[J]. China Metalforming Equipment & Manufacturing Technology, 2016, 51(2):44-47.


[62]赵国栋, 王丽薇, 刘振宇, . 锻造液压机成套设备可视化集成平台开发[J]. 锻压技术, 2015, 40(6):79-83.


Zhao G D, Wang L W, Liu Z Y, et al. Development of visual integration platform for forging hydraulic press equipment[J]. Forging & Stamping Technology, 2015, 40(6):79-83.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9