网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金方形管件液压胀形成形性的有限元模拟和实验研究
英文标题:Finite element simulation and experiment study on formability of hydro-forming for aluminum alloy square tube
作者:陆宏 田世伟 黄文 刘庆国 张璐 赵利涛 
单位:燕山大学 中国电子科技集团有限公司 
关键词:管材液压胀形 成形极限 铝合金管材 S-R理论 FEM模拟 
分类号:TG315.4
出版年,卷(期):页码:2018,43(7):153-158
摘要:

管材液压胀形件的变形复杂,难以确定其最佳成形路径。着眼于A6063铝合金方形管件的液压胀形,探索可以提高其成形性的最佳加载路径。使用ABAQUS EXPLICIT 软件,对管材液压胀形过程进行有限元模拟,分析轴向和圆周方向的应变,假定管材在液压胀形中为平面应力状态,使用由S-R理论得出的FLD对不同应变路径下的管材液压胀形的成形性进行评价,并在此基础上确定最佳加载路径。为了验证理论结果的有效性,使用直径为Φ40 mm、厚度为2 mm的A6063铝合金管进行了实验研究,实验结果和理论预测基本一致。

The deformation of tube hydro-forming is complex, and it is difficult to determine the optimum loading path before production. Therefore, the hydro-forming of aluminum alloy A6063 square tube was studied, and the optimum loading path improving the formability was explored. Then, the tube hydro-forming process was simulated by software ABAQUS EXPLICIT, and the axial and circumferential strains were analyzed. Furthermore, assuming the tube under the plane stress state during the hydro-forming process, the formability of tube hydro-forming under different strain paths was evaluated by the FLD obtained from the S-R theory, and the optimal loading path was determined on this basis. Finally, the experiments of tube hydro-forming were conducted by aluminum alloy A6063 tubes with diameter of  Φ40 mm and thickness of 2 mm to validate the validity of theoretical results, and the experiment results are in agreement with the theoretical prediction.

基金项目:
国家自然科学基金资助项目(51675466);河北省科技计划项目(15211820)
作者简介:
陆宏(1962-),女,博士,副教授,E-mail:honglu@ysu.edu.cn
参考文献:

[1]Ueda T. Differential gear casting for automobiles by liquid bulge forming process-Part 1[J]. Sheet Metal Industries-Metal Forming, 1983, 60(3): 181-185.


[2]Ueda T. Differential gear casting for automobiles by liquid bulge forming process-Part 2[J].Sheet Metal Industries-Metal Forming, 1983, 60(4):48-56.


[3]Tirosh J, Neuberger AShirizly A. On tube expansion by internal fluid pressure with additional compressive pressure[J]. International Journal of Mechanical Science, 1996, 38(8-9):829-851.


[4]Zhao L, Sowerby R, Sklad M P. A theoretical and experimental investigation of limit strains in sheet metal forming[J]. International Journal of Mechanical Science, 1996, 38(12):1307-1317.


[5]Xing H L, Makinouchi A. Numerical analysis and design for tubular hydroforming[J]. International Journal of Mechanical Science, 2001, 43(4):1009-1026.


[6]Nefussi G, Combescure A. Coupled buckling and plastic instability for tube hydroforming[J]. International Journal of Mechanical Science, 2002, 44(5)99-914.


[7]Yoshida K, Kuwabara T. Effect of strain hardening behavior on forming limit stresses of steel tube subjected to nonproportional loading paths[J]. International Journal of Plasticity, 2007, 23(7):1260-1284.


[8]Lei L P, Kang B S, Kang S J. Prediction of the forming limit in hydroforming processes using the finite element method and a ductile criterion[J]. Journal of Materials Processing Technology, 2001, 113(1):673-679.


[9]黄文,陆宏,于海波,等. 基于局部分叉理论的铝合金板材成形性预测研究[J].塑性工程学报,2017, 245):68-73.


Huang W, Lu H, Yu H B, et al. Study of formability prediction for aluminum alloy sheet metal based on local bifurcation theory[J]. Journal of Plasticity Engineering2017,245):68-73.


[10]贾宇坤,罗建斌,李健,等. 轿车加强梁内高压成形规律的仿真研究 [J].锻压技术,2017, 422):183-188.


Jia Y KLuo J BLi J, et al. Simulation study on the hydroforming regulation of reinforcing beam of car [J]. Forging & Stamping Technology2017, 422):183-188.


[11]李坤,杨连发,魏军,等. 新型管材冲击液压成形装置的设计 [J].锻压技术,2017, 426):77-81.


Li KYang L FWei Jet al. Design on a new type of tube impact hydroforming equipment [J]. Forging & Stamping Technology2017, 426):77 -81.


[12]St-ren S, Rice J R. Localized necking in thin sheets [J]. Journal of Mechanics and Physics of Solids, 1975, 23(6):421-440.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9