网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
等温锻造应变速率对机械盘件TC4钛合金力学性能和耐磨损性能的影响
英文标题:Influence of isothermal forging strain rate on mechanical properties and wear resistance properties of mechanical disk for titanium alloy TC4
作者:张在平 
单位:常州工程职业技术学院 
关键词:机械盘件 TC4钛合金 等温锻造 应变速率 力学性能 耐磨损性能 
分类号:TG146.2+3 ;TG319
出版年,卷(期):页码:2018,43(7):187-191
摘要:

采用不同的等温锻造应变速率进行了机械盘件TC4钛合金的锻造成形,并进行了室温力学性能和耐磨损性能的测试和分析。结果表明:等温锻造应变速率对机械盘件TC4钛合金的力学性能和耐磨损性能产生明显影响;随等温锻造应变速率从6×10-4 s-1增大到6×10-3 s-1,试样的抗拉强度先减小后增大,断后伸长率和磨损体积先增大后减小;与6×10-4 s-1应变速率相比,采用6×10-3 s-1应变速率的抗拉强度增大了15 MPa,断后伸长率减幅较小,减小了1.9%,磨损体积减小了3×10-3 mm3,试样的力学性能和耐磨损性能均先下降后提高。机械盘件TC4钛合金的等温锻造应变速率优选为6×10-3 s-1。

The mechanical disk parts of titanium alloy TC4 were forged at different isothermal forging strain rates, and the mechanical properties and wear resistance properties at room temperature were tested and analyzed. The results show that the isothermal forging strain rate has a significant influence on the mechanical properties and wear resistance properties of mechanical disk parts for titanium alloy TC4. With the isothermal forging strain rate increasing from 6×10-4 s-1 to 6×10-3 s-1,the tensile strength of sample decreases first and then increases, and the elongation after fraction and wear volume increase first and then decrease. Compared with the strain rate of 6×10-4 s-1, the tensile strength at the strain rate of 6×10-3 s-1 increases by 15 MPa, and the elongation after fraction reduces by 1.9% slightly as well as the wear volume reduces by 3×10-3 mm3. Furthermore, the mechanical properties and wear resistance properties of sample increase first and then decrease, and the optimized isothermal forging strain rate of mechanical disk parts for titanium alloy TC4 is 6×10-3 s-1.

基金项目:
2014年度江苏省高校“青蓝工程”资助项目(ZY6107016);常州工程职业技术学院科研课题(ZY6107016)
作者简介:
张在平(1974-),男,硕士,讲师,E-mail:zealping@126.com
参考文献:

[1]胥军.TC4-DT钛合金磨削及其表面性能研究[D].南京:南京航空航天大学,2014.


Xu J. Research on Grinding of TC4-DT Titanium Alloy and Its Surface Properies[D]. Nanjing: Nanjing University of Aeronautics & Astronautics,2014.


[2]刘莲芳.钛和铝合金氧化膜的摩擦电化学行为实验研究[D]. 哈尔滨:哈尔滨工业大学,2006.


Liu L F. Experimental Study and Characteristic Analysis on Tribo-electrochemistry of Titanium and Aluminum Alloy′s Oxidation Film [D]. HarbinHarbin Institute of Technology,2006.


[3]崔文俊,郭柏兰,崔斌,等.TC4钛合金棒材挤压拉拔的金相组织和力学性能演变过程探究[J].锻压技术,2017,42(10):166-169.


Cui W J, Guo B L, Cui B, et al. Study on microstructure and mechanical properties evolution process in the extrusion-drawing for titanium alloy TC4 bar [J]. Forging & Stamping Technology, 2017,42(10):166-169.


[4]李礼,张晓泳,李超,.TC18钛合金盘件等温模锻过程有限元模拟及试验[J].中国有色金属学报,2013,(12):3323-3334.


Li L, Zhang X Y, Li C, et al. Finite element simulation and experiment of isothermal die forging process of TC18 Ti alloy disc [J]. The Chinese Journal of Nonferrous Metals,2013,(12):3323-3334.


[5]张鹏省,毛小南,韩栋,.航空航天用钛合金盘件开发与应用[J].钛工业进展,2011,28(3):6-8.


Zhang P S, Mao X N, Han D, et al. Research and development of titanium alloys discs for aerospace and space[J]. Titanium Industry Progress, 2011, 28(3):6-8.


[6]熊爱明,林海,李淼泉,.TC6钛合金盘等温锻造时晶粒尺寸的数值模拟[J].中国机械工程,2003,14(9):791-794.


Xiong A M, Lin H, Li M Q, et al. Numerical simulation of grain evolution during isothermal forging of a TC6 titanium alloy[J]. China Mechanical Engineering, 2003, 14(9):791-794.


[7]侯会喜.钛合金锻造成形过程热力参数与微观组织研究[D].西安:西安理工大学,2007.


Hou H X. Researching on Titanium Alloy Microstructure and Thermal Parameters of the Process of Forging[D]. Xi′anXi′an University of Technology, 2007.


[8]刘章光,李建辉,李培杰,等.Ti-55钛合金板材的超塑性变形及组织演变[J].稀有金属,2017,41(12):1285-1292.


Liu Z G, Li J H, Li P J, et al. Superplastic deformation and microstructure evolution of Ti-55 alloy sheet[J]. Chinese Journal of Rare Metals,2017,41(12):1285-1292.


[9]李庆华,李付国,李淼泉,.FGH96合金盘件等温锻造温度的优化设计[J].锻压装备与制造技术,2010,45(1):87-90.


Li Q H,Li F G,Li M Q, et al. Optimized design of isothermal forging temperature about nickel-base PM super-alloy FGH96[J]. China Metalforming Equipment & Manufacturing Technology,2010,45(1):87-90.


[10]金泉林.钛合金辗压盘件的微观组织分布特征[J].塑性工程学报,2013,20(6):9-16.


Jin Q L. Microstructure distribution of rolled titanium disk[J]. Journal of Plasticity Engineering,2013,20(6):9-16.


[11]孙荣禄,杨贤金.激光熔覆原位合成TiC-TiB2/Ni基金属陶瓷涂层的组织和摩擦磨损性能[J].硅酸盐学报, 2003, 31(12): 1221-1224.


Sun R L,Yang X J. Microstructure and friction and wear properties of TiC-TiB2/Ni based metal ceramic coatings synthesized by laser cladding[J]. Journal of the Chinese Ceramic Society, 2003,31(12):1221-1224.


[12]卫品官,黄澍,周磊,.应变率对高强度TRIP力学性能的影响[J].热加工工艺,2010,39(16): 49-51.


Wei P G, Huang S, Zhou L, et al. Effect of strain rate on mechanical properties of high strength TRIP steel[J]. Hot Working Technology,2010,39(16): 49-51.


[13]王波伟,唐军,曾卫东,等.TC17合金整体叶盘等温锻造过程数值模拟及工艺参数影响[J].锻压技术,2017,42(6):7-11,50.


Wang B W, Tang J, Zeng W D, et al. Influence of process parameters and numerical simulation on isothermal forging for integral blisk of alloy TC17[J]. Forging & Stamping Technology, 2017,42(6):7-11,50.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9