网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
模锻装备复杂锻造过程两环控制方法
英文标题:Two-loop control method of complex forging process for die forging equipment
作者:隋昊 陈宇 
单位:中南大学 
关键词:模锻装备 非线性动态分析 锻造过程 两环控制 控制器 
分类号:TG315.4
出版年,卷(期):页码:2018,43(8):122-130
摘要:

高品质锻件的成形需要模锻装备具有稳定运行的能力,然而锻造液压驱动过程的强非线性使其难以实现精确控制。针对这一问题,提出了一种基于非线性动态分析的两环控制方法,与现有的专门针对某种特定锻件的控制方法不同,该控制方法可以有效地用于不同锻件的锻造过程。首先推导了闭环锻造系统的非线性数学模型,并提出一种该模型的求解方法,针对该模型的解进一步分析了闭环锻造系统的动力学特性,推导出系统稳定运行的条件以及控制器参数与约束条件之间的关系。通过对几种典型锻件的仿真试验,验证了分析结果的正确性和所设计控制器的有效性,结果表明新的控制方法具有更好的控制效果。

The forgings with high quality are produced by die forging equipment with steady operation ability, and the precise control is difficult to achieve because of strong nonlinearity in forging hydraulic drive process. In order to solve this problem, a two-loop control method based on nonlinear dynamic analysis was proposed. Unlike the existing control methods designed specifically for a given workpiece, the proposed control method could be effectively used in the forging process of different workpieces. Firstly, the closed-loop nonlinear mathematical model of the forging process was deduced, and a solving method was developed in order to obtain the model solution. Furthermore, the dynamics characteristic of the closed-loop forging process was further analyzed based on the above solution, and the conditions for steady operation as well as the relationship between controller parameters and constraints were also derived. Finally, the validity of analysis results and the effectiveness of design controller were verified by simulation tests of several typical workpieces. The simulation results show that the new control method has better control effect.
 

基金项目:
国家自然科学基金资助项目(51675539);湖南省科技领先人才项目(2016RS2015);中南大学创新驱动计划(2016CX009)
作者简介:
隋昊(1993-),男,硕士研究生,E-mail:suihao@csu.edu.cn;作者简介:陈宇(1990-),男,硕士,讲师,E-mail:1032219342@qq.com
参考文献:


[1]黄长征, 李小东, 谭建平. 液压机速度控制技术新发展
[J]. 锻压技术, 2007, 32(5):8-11.


Huang C Z, Li X D, Tan J P. Development trends on speed control of hydraulic press
[J]. Forging & Stamping Technology, 2007, 32(5):8-11.



[2] Lu X J, Huang M H. System decomposition based multilevel control for hydraulic press machine
[J]. IEEE Transactions on Industrial Electronics, 2012, 59(4):1980-1987.



[3] Ghenadi A S, Topliceanu L, Bibire L. Particular aspects on the dynamics of hydraulic driven robot with spherical joints
[J].Applied Mechanics and Materials:Trans. Tech. Publications, 2013, 332:254-259.



[4] Lin C J, Yau H T, Tian Y C. Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage
[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1385-1396.



[5] Lee T H, Tan K K, Huang S. Adaptive friction compensation with a dynamical friction model
[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(1):133-140.



[6] 李文坚, 李毅波, 潘晴. 基于 LuGre 模型的大型模锻装备低速摩擦补偿分析
[J]. 锻压技术, 2015, 40(1):71-75.


Li W J,Li Y B,Pan Q. Analysis on low-velocity friction compensation of large forging equipment based on LuGre-model
[J]. Forging & Stamping Technology, 2015, 40(1):71-75.



[7] Beddoes J, Bibbly M J. Principles of Metal Manufacturing Process
[M]. Massachusetts: Butterworth-Heinemann,1999.



[8] 林治平. 锻压变形力的工程计算
[M]. 北京:机械工业出版社,1986.


Lin Z P. Engineering Calculation of Deformation Force
[M]. Beijing:China Machine Press, 1986.



[9] Lu X J, Zou W, Huang M H, et al. A process/shape-decomposition modeling method for deformation force estimation in complex forging processes
[J]. International Journal of Mechanical Sciences, 2015, 90:190-199.



[10] Balau A E, Caruntu C F, Lazar C. Simulation and control of an electro-hydraulic actuated clutch
[J]. Mechanical Systems and Signal Processing, 2011, 25(6):1911-1922.



[11] etin 瘙塁, Akkaya A V. Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system
[J]. Nonlinear Dynamics, 2010, 61(3):465-476.



[12] Woodacre J. Model-predictive Control of a Hydraulic Active Heave Compensation System with Heave Prediction
[D]. Nova Scotia:Dalhousie University, 2015.



[13] Lai L H, Liu F. The electro-hydraulic synchronization position servo system based on nonlinear and non-gaussian time sequence prediction model
[J].Applied Mechanics and Materials:Trans. Tech. Publications, 2014, 472:306-311.



[14] Lu X J, Huang M H. System decomposition based multi-level control for hydraulic press machine
[J]. IEEE Tran. on Industrial Electronics, 2012, 59(4):1980-1987.



[15] Guo Q, Yu T, Jiang D. Robust H∞ positional control of 2-DOF robotic arm driven by electro-hydraulic servo system
[J]. ISA Transactions, 2015, 59:55-64.



[16] 叶小华, 岑豫皖,赵韩,等. 基于液压弹簧刚度的阀控非对称缸建模仿真
[J]. 中国机械工程,2011,22(1):23-27.


Ye X H, Cen Y W, Zhao H, et al. Modeling and simulation of hydraulic spring stiffness-based asymmetrical cylinder controlled by valve
[J]. China Mechanical Engineering, 2011, 22(1):23-27.



[17] 陈树辉. 强非线性振动系统的定量分析方法
[M]. 北京:科学出版社,2007.


Chen S H. Quantitative Analysis Method of Strongly Nonlinear Vibration System
[M]. Beijing:Science Press, 2007.



[18] 江玲玲,张俊俊. 基于AMESim与Simulink联合仿真技术的接口与应用研究
[J]. 机床与液压, 2008, 36(1):148-149.


Jiang L L, Zhang J J. Interface and application research united simulation technique based on a MESim and Matlab/Simulink
[J]. Machine Tool and Hydraulics, 2008, 36(1):148-149.



[19] Zheng J M, Zhao S D, Wei S G. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press
[J]. Control Engineering Practice, 2009, 17(12):1398-1404.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9