摘要:
|
超薄壁筒形件在装配和服役过程中,对内径精度有较高的要求。利用Msc.Marc有限元分析软件,建立大径厚比超薄壁筒有限元模型。通过测量筒形件轴向不同位置处的内径值,得到内径偏差和内径波动沿轴线的分布规律,由此得到不同的工艺参数(旋轮圆角半径、进给比、旋轮轴向间距和径向间距)对内径成形精度的影响。结果表明:随着圆角半径的减小,内径偏差及内径波动值均降低,采用修正旋轮圆角半径时内径精度最好;进给比越小,内径偏差越大,则内径波动越小,综合考虑后取进给比f=1.0 mm·r-1;随着旋轮轴向间距的增大,内径偏差及内径波动均呈现先减小后增大的规律,旋轮轴向最优间距 C=1.5 mm;而旋轮径向间距按照等旋压力分配时内径精度最好。旋压实验表明,采用优化后的工艺参数能获得满足内径精度要求的产品。
|
The ultra-thin wall tube has a high requirement for the accuracy of the inner diameter in the process of assembly and service. A finite element model of ultra-thin wall tube was established by finite element analysis software Msc.Marc, and the distributions of inner diameter deviation and inner diameter fluctuation along the axis were obtained by measuring the inner diameter of the tube at different axial positions. Thus, the influences of different process parameters (roller radius, feed ratio, roller radial distance and roller axial distance ) on the inner diameter forming precision were obtained. The results show that the inner diameter deviation and the inner diameter fluctuation decrease with the decrease of roller radius, and the precision of the inner diameter is the best when the updated roller radius is used. Furthermore, the smaller the feed ratio is, the larger the inner diameter deviation is, but the inner diameter fluctuation is on the contrary, and the optimal value of feed ratio f is 1 mm·r-1. With the increase of roller axial distance, the inner diameter deviation and the inner diameter fluctuation decrease first and the increase, and the optimal value of roller axial distance C is 1.5 mm. In the end, when roller radial distance of spinning rollers is arranged according to the principle of equal spin pressure, the inner diameter precision is the best. The spinning test shows that the spinning product can meet the requirements of the inner diameter by the optimized process parameters.
|
基金项目:
|
国家重点基础研究发展计划(“973”计划)(2015CB057305)
|
作者简介:
|
作者简介:曹权(1989-),男,硕士研究生
E-mail:371350896@qq.com
通讯作者:李新和(1957-),男,博士,教授
E-mail:1378239904@qq.com
|
参考文献:
|
[1]赵云豪,李彦利. 旋压技术与应用 [M]. 北京:机械工业出版社,2007.
Zhao Y H, Li Y L. Spinning Technology and Application [M]. Beijing: China Machine Press, 2007.
[2]李新和,杨新泉,王艳芬. 薄壁筒形件旋压成形的研究进展 [J]. 锻压技术,2011,36(1):7-12.
Li X H, Yang X Q, Wu Y F. Research progress of thin-wall tube spinning [J]. Forging & Stamping Technology, 2011, 36(1): 7-12.
[3]张剑, 汤禹成. 基于BP神经网络响应曲面的筒形件强力旋压工艺参数优化研究 [J]. 锻压装备与制造技术, 2007, 42(1):71-75.
Zhang J, Tang Y C. Optimization of tube spinning based on BP neural network response surface methodology [J]. China Metalforming Equipment & Manufacturing Technology, 2007, 42 (1): 71-75.
[4]翟福宝, 李帆, 张质良,等. 筒形件错距旋压的有限元分析及其工艺优化系统 [J]. 上海交通大学学报, 2002, 36(4):445-448.
Zhai F B, Li F, Zhang Z L, et al. Finite element analysis and process optimization system of the tube stagger spinning [J]. Journal of Shanghai Jiaotong University, 2002, 36 (4): 445-448.
[5]翟福宝, 张质良, 夏萼辉,等. 基于有限元模拟的筒形件错距旋压智能参数优化系统研究 [J]. 锻压装备与制造技术, 2000, 35(2):44-45.
Zhai F B, Zhang Z L, Xia E H, et al. Research on intelligent parameters optimization based on FEA simulation of tube stagger spinning [J]. Metalforming Machinery, 2000, 35 (2): 44-45.
[6]李露露, 杜茂华, 白玉峰. 金属筒形件强力反旋变形过程的数值模拟分析 [J]. 热加工工艺, 2010, 39(9):115-119.
Li L L, Du M H, Bai Y F. Numerical simulation analysis of backward spinning process for metallic cylinder [J]. Hot Working Technology, 2010, 39(9): 115-119.
[7]李新和,何霞辉,邓锐,等. 超薄壁大径厚比筒体旋压鼓形失稳机理与规律 [J]. 塑性工程学报,2011,18(5):99-104.
Li X H, He X H, Deng R, et al. Mechanism and behavior of drum style instability during flow forming of extra-thin-walled tube with high ratio of diameter/thickness [J]. Journal of Plasticity Engineering, 2011, 18(5): 99-104.
[8]Xia Q, Xiao G, Long H, et al. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning [J]. Materials & Design, 2014, 59(6): 516-523.
[9]Xiao G F, Xia Q X, Cheng X Q, et al. New forming method of manufacturing cylindrical parts with nano/ultrafine grained structures by power spinning based on small plastic strains [J]. Science China Technological Sciences, 2016, 59(11):1656-1665.
[10]程秀全,吴万敏,张鹏,等. 筒形件错距旋压成形工艺参数优化 [J]. 塑性工程学报,2012,19(5):104-108.
Cheng X Q, Wu W M, Zhang P, et al. Optimization of process parameters for tubular parts stagger spinning [J]. Journal of Plasticity Engineering, 2012, 19(5):104-108.
[11]解加庆,赵捍东,李飞,等. 基于正交试验的筒形件旋压工艺优化设计 [J]. 锻压技术,2013,38(4):182-185.
Xie J Q, Zhao H D, Li F, et al. Optimization design of cylinder spinning technology based on orthogonal experiment [J]. Forging & Stamping Technology, 2013, 38(4): 182-185.
[12]张坦, 李新和, 魏准, 等. 工艺参数对大径厚比薄壁筒形件旋压成形质量的影响研究 [J].塑性工程学报,2017,24(2):75-81.
Zhang T, Li X H, Wei Z, et al.Influence of process parameters on the flow forming quality of thin-walled tube with large diameter-thickness ratio. [J]. Journal of Plasticity Engineering, 2017, 24(2):75-81.
[13]吕伟,樊文欣,陈东宝, 等.工艺参数对筒形件错距正旋成形尺寸精度的影响 [J]. 锻压技术,2016,41(8):83-88.
Lyu W, Fan W X, Chen D B, et al. Influences of process parameters on dimensional accuracy in the cylinder stagger forward spinning. [J].Forging & Stamping Technology, 2016, 41 (8):83-88.
[14]张涛. 旋压成形工艺 [M]. 北京:化学工业出版社,2009.
Zhang T. The Spinning Forming Technology [M]. Beijing: Chemical Industry Press, 2009.
[15]汪建平, 宋晓华. 基于Marc的金属塑性加工有限元模拟 [J]. 轻工机械, 2006, 24(1):78-81.
Wang J P, Song X H. Finite element simulation for metal plasticity processing based on Marc [J]. Light Industry Machinery, 2006, 24(1): 78-81.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|