网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金轮毂锻造组织缺陷有限元分析与工艺优化
英文标题:Finite element analysis and process optimization on microdefects of aluminum alloy wheel in forging
作者:陈微 谷艳飞 董春法 杨秀芝 王向杰 官英平 
单位:湖北理工学院 燕山大学 
关键词:6061铝合金 轮毂 锻造 组织缺陷 有限元模拟 
分类号:TG319
出版年,卷(期):页码:2018,43(10):36-42
摘要:

为了消除6061铝合金轮毂锻造成形中极易出现的组织缺陷,基于有限元模拟技术,采用Deform3D软件对高钛6061铝合金轮毂锻造成形过程进行了数值模拟,研究了轮毂热锻过程中变形温度、变形速率以及变形量对组织缺陷产生的影响。结合数值模拟结果和现有的成形工艺,获得了用来控制组织缺陷产生的优化的工艺参数组合,即高温预锻、低温终锻、降低预锻变形量、增大终锻变形量和增大变形速率。根据最佳的工艺参数组合,进行了生产试验。结果表明,优化后的成形工艺能够有效控制铝合金轮毂锻造组织缺陷的产生。

In order to eliminate the microdefects easily occurred in forging process of 6061 aluminum alloy wheels, the forging process of high titanium 6061 aluminum alloy wheels was simulated by finite element software Deform3D, and the influences of deformation temperature, deformation rate and deformation amount on the microdefects in the hot forging process of wheels were studied. Then, the suitable combination of process parameters for controlling microdefects was acquired by combining the simulation results with existing forming process, which were preforging with high temperature, finalforging with low temperature, reducing preforging deformation, increasing finalforging deformation and increasing deformation rate. According to the optimum combination of process parameters, the produce test was conducted. The results show that the optimized forming process can effectively control the forging microdefects of aluminum alloy wheels.

基金项目:
河北省自然科学基金资助项目(E2018203254);湖北理工学院人才引进资助项目(17xjz02R);湖北理工学院校级科研项目(18xzj03Q)
作者简介:
陈微(1985-),男,博士,讲师,E-mail:chenw@hbpu.edu.cn
参考文献:

[1]吴道祥, 周杰, 张建生,. 7050铝合金航空锻件热锻成形穿流缺陷分析[J]. 华中科技大学学报: 自然科学版, 2015, 43(4): 69-73.


Wu D X, Zhou J, Zhang J S, et al. Analyzing partial draining of 7050 aluminum alloy aircraft forging after hot die forming[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2015, 43(4): 69-73.


[2]冯正海. 铝合金前梁模锻件粗晶缺陷及对策[J]. 轻合金加工技术, 2009, 37(11): 33-35.


Feng Z H. Aluminum alloy die forgings former beam defect of coarse-grained and countermeasures[J]. Light Alloy Fabrication Technology, 2009, 37(11): 33-35.


[3]刘静安, 潘伟津, 罗立新,. 铝合金锻件主要缺陷的特征及产生原因[J]. 轻合金加工技术, 2014, 42(1): 54-57.


Liu J APan W JLuo L X, et al. Main features and cause of the defects of aluminum alloy forging[J]. Light Alloy Fabrication Technology, 2014, 42(1): 54-57.


[4]韦韡, 蒋鹏, 唐永夫,. 铝合金筋类零件锻造缺陷分析[J]. 锻压技术, 2012, 37(4): 18-21.


Wei W, Jiang P, Tang Y F, et al. Analysis on forging defects of aluminum alloy forging with rib[J]. Forging & Stamping Technology, 201237(4): 18-21.


[5]刘建勃, 王智毅, 马雄. 基于神经元网络的Al-Mg-Si合金动态再结晶预测[J]. 塑性工程学报, 2017, 24(4): 167-173.


Liu J B, Wang Z Y, Ma X. Prediction on dynamic recrystallization behavior of Al-Mg-Si alloy based on artificial neural network[J]. Journal of Plasticity Engineering, 2017, 24(4): 167-173.


[6]汪建敏, 周孔亢, 陆晋, . 层错能在剧烈剪切变形时对晶粒细化的影响[J]. 机械工程学报, 2008, 44(11): 126-131.


Wang J MZhou K KLu J, et al. Influence of stacking fault energy on grain-refining during severe shear deforming[J]. Chinese Journal of Mechanical Engineering, 2008, 44(11): 126-131.


[7]李帅华, 柳光祖, 杨峥. 热轧变形量对MGH754合金板材组织和性能的影响[J]. 钢铁研究学报, 2010, 22(3): 52-55.


Li S H, Liu G Z, Yang Z. Effect of hot rolling deformation on structure and properties of MGH754 alloy sheet[J]. Journal of Iron and Steel Research, 2010, 22(3): 52-55.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9