网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于改进蚁群算法的渐进成形工艺参数优化
英文标题:Optimization on process parameters in the incremental forming based on improved ant colony algorithm
作者:王玉槐 王李冬 勾治践 童晓平 
单位:杭州师范大学 
关键词:渐进成形 蚁群算法 减薄率 正交实验 ANSYS/LSDYNA 
分类号:TG386.4
出版年,卷(期):页码:2018,43(10):57-62
摘要:

针对渐进成形板厚分布不均、易导致局部破裂的问题,以平均减薄率作为目标对象,提出一种用于渐进成形工艺参数组合优化的改进型蚁群算法。通过回归分析,建立了以成形角、工具头直径、初始板厚和轴向进给量为自变量的减薄率四元二次型模型,给出了减薄率最小值优化问题模型及其约束条件。针对不同成形角的圆台件,通过蚁群算法,寻找到符合目标的最优工艺参数组合为工具头直径Φ10 mm、初始板厚1.0 mm和轴向进给量1.0 mm。以成形角30°,37°,45°和60°的圆台件为例,利用优化所得工艺参数分别进行ANSYS/LSDYNA仿真和Al1060铝板实验。结果表明,与Sine法则减薄率相比,改进蚁群算法、仿真及实验的减薄率偏差最大分别为0.823%,1.16%和3.4%。

 For the problem of uneven thickness distribution easily leading to the local fracture of sheet in the incremental forming, taking the average thinning rate as the objective function, an improved ant colony algorithm used for the combination optimization of incremental forming process parameters was proposed. Then, taking the forming angle, tool head diameter, initial sheet thickness and axial increment as input parameters and the thinning rate as output parameter, the secondorder model was established by the regression analysis, and the minimum optimization problem model for thinning rate and its constraint conditions were given. Furthermore, based on the truncated conical parts with different forming angles, the optimal process parameters of tool head diameter Φ10 mm, initial sheet thickness 1.0 mm and axial increment 1.0 mm were obtained by the ant colony algorithm. For the truncated conical parts with forming angles of 30°, 37°, 45° and 60° respectively, the simulation based on ANSYS/LSDYNA and the experiment of Al1060 aluminum sheet were conducted by the optimized parameters. The results show that compared with the thinning rate for the Sine rule, the maximum deviations of the thinning rate for the improved ant colony algorithm, simulation and experiment are 0.823%, 1.16% and 3.4%, respectively.
 

基金项目:
浙江省自然科学基金重点项目(LZ12E05003)
作者简介:
王玉槐(1981-),男,博士,讲师,E-mail:5472728@qq.com
参考文献:

[1]Behera A K, Sousa R A, Ingarao G, et al. Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015[J]. Journal of Manufacturing Processes, 2017, 27: 37-62.


[2]耿佩,崔玉琦,李军超. 板材渐进成形破裂分析与数值模拟[J]. 锻压装备与制造技术,201752(3)79-82.


Geng P, Cui Y Q, Li J C. Fracture analysis and numerical simulation of sheet metal incremental forming [J]. China Metalforming Equipment & Manufacturing Technology, 2017, 52(3): 79-82.


[3]Ai S, Lu B, Chen J, et al. Evaluation of deformation stability and fracture mechanism in incremental sheet forming[J]. International Journal of Mechanical Science, 2017, 124-125: 174-184.


[4]Paniti I. Adaptation of incremental sheet forming into cloud manufacturing[J]. CIRP Journal of Manufacturing Science and Technology, 2014, 7(3): 185-190.


[5]Azaouzi M, Lebaal N. Tool path optimization for single point incremental sheet forming using response surface method[J]. Simulation Modelling Practice and Theory, 2012, 24(2): 49-58.


[6]Said L B, Mars J, Wali M, et al. Numerical prediction of the ductile damage in single point incremental forming process[J]. International Journal of Mechanical Sciences, 2017, 131-132: 546-558.


[7]Salem E, Shin J, Nath M, et al. Investigation of thickness variation in single point incremental forming[J]. Procedia Manufacturing, 2016, 5: 828-837.


[8]周六如. 板料数控渐进成形变形区厚度变化规律的研究[J]. 机械工程学报,201147(18)50-54.


Zhou L R. Research on the thickness change laws in numerical control incremental sheet forming [J]. Journal of Mechanical Engineering, 2011, 47(18): 50-54.


[9]Shanmuganatan S P, Kumar V S. Modeling of incremental forming process parameters of Al 3003(O) by response surface methodology[J]. Procedia Engineering, 2014, 97: 346-356.


[10]李军超,张旭,彭守桃. 金属板材无模渐进成形板厚变化仿真与实验研究[J]. 热加工工艺,201140(7)1-4.


Li J C, Zhang X, Peng S T. Experimental and numerical research on thickness variation of dieless sheet metal incremental forming [J]. Hot Working Technology, 2011, 40(7): 1-4.


[11]陈蕴弛,李芳,王秋成. 基于响应面法的渐进成形参数优化[J]. 锻压技术,201439(11)11-15.


Chen Y C, Li F, Wang Q C. Parameter optimization of incremental sheet metal forming by response surface method [J]. Forging & Stamping Technology, 2014, 39(11): 11-15.


[12]陈继平,钱健清,王会廷. 渐进成形锥形件壁厚的正弦定理预测精度研究[J]. 中国机械工程,201728(22)2760-2766.


Chen J P, Qian J Q, Wang H T. Study on wall thickness prediction accuracy by sine law for incrementally formed conical parts [J]. China Mechanical Engineering, 2017, 28(22): 2760-2766.


[13]Ambrogio G, Filice L, Gaudioso M, et al. Optimised tool path design to reduce thinning in ISF process[J]. International Journal of Material Forming, 2010, 3(1): 959-962.


[14]朱虎,唱晓东,刘一波,等. 数控渐进成形中挤压方向对钣金件厚度均匀化影响[J]. 锻压技术,201641(10)32-37.


Zhu H, Chang X D, Liu Y B, et al. Influence of extrusion direction on uniformity of metal part thickness in CNC incremental forming [J]. Forging & Stamping Technology, 2016, 41(10): 32-37.


[15]安治国,庞鹏辉,陈科衡,等. 有模单点渐进成形工艺参数对1060铝合金成形性能的影响[J]. 锻压技术,201742(11)94-98.


An Z G, Pang P H, Chen K H, et al. Influence of process parameters of singlepoint incremental forming with die on formability of aluminum alloy 1060 [J]. Forging & Stamping Technology, 2017, 42(11): 94-98.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9