网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Yoshida_Uemori材料模型的整形工艺超高强钢地板纵梁的回弹分析
英文标题:Springback analysis on sizing process of longitudinal floor beam for super high strength steel based on Yoshida_Uemori material model
作者:刘贞伟 郭运 
单位:宝山钢铁股份有限公司 
关键词:回弹 超高强钢 地板纵梁 Yoshida_Uemori材料模型 有限元模拟 
分类号:TG386.3
出版年,卷(期):页码:2018,43(10):62-67
摘要:

首先通过试验测试的方法测定了QP980超高强钢零件的Yoshida_Uemori材料模型的各相关参数,并以此作为后续研究的基础。然后以地板纵梁为研究对象,分别完成了仿真过程和实际生产过程的数据分析,通过对比回弹分布,验证了使用Yoshida_Uemori硬化曲线的材料模型在实际生产过程中的回弹计算准确性。再进一步以仿真数据为基础,分析此类型零件回弹特点产生的原因。最终发现:对于法兰位置有凸台的地板纵梁零件,在中间位置侧壁的主应变方向一致性较好,以平行于法兰方向为主,顶层的主应变达到0.52左右,底层的主应变达到0.3左右,容易通过平行于法兰方向的回弹来释放;而靠近端部的顶层的主应变达到0.4左右,方向一致性较差,从而通过变形释放的趋势较小;以上这些导致零件中部的侧壁角回弹为两端角回弹值的1.5~2.5倍。
 

The related parameters of YoshidaUemori material model for QP980 super high strength steel part were measured by tests, and taking this as the foundation of followup research. Then the data analyses of simulation process and actual production process were completed for longitudinal floor beam. By comparing the springback distribution, the springback calculation accuracy of the material model applying the hardening curve of Yoshida_Uemori in the actual production process was verified, and the causes of this type of springback characteristic were analyzed based on the simulation data. Finally, it is found that the direction similarity of major strain at the central side wall is good and mainly in the direction parallel to the flange for longitudinal floor beam part with bosses at flange locations, and the principal strains at the top and bottom reach about 0.52 and 0.3 respectively which are easy to release by the springback parallel to the flange. However, the principal strain near two ends is up to 0.4, and the direction similarity is worse, thus, the tendency to release through deformation is small. So above all of these cause the angle springback at the central side wall to be 1.5-2.5 times that near two ends.

基金项目:
国家重点研发计划(2017YFB0304403)
作者简介:
刘贞伟(1982-),男,硕士,工程师,E-mail:liuzhenwei0720@163.com
参考文献:

[1]刘伟,刘红生,刑忠文,等. 高强钢板冲压成形回弹规律与工艺参数研究[J]. 材料科学与工艺, 201018(6): 758-761.


Liu WLiu H SXing Z Wet al. Study on process parameters and springback rule for stamping of high strength steel sheet[J]. Materials Science Technology, 201018(6): 758-761.


[2]Shen HLi SChen GNumerical analysis of panels′ dent resistance considering the Bauschinger effect[J]Materials & Design201031(2): 870-876


[3]Yoshida F Hamasaki H Uemori T. A model of anisotropy evolution of sheet metals[J]. Procedia Engineering, 2014, 81: 1216-1221.


[4]International Iron & Steel Institute Commitee on Automotive Application. Advanced High Strength Steel (AHSS) Application Guideline: Version 3[EB/OL]. https://www.worldautosteel.org, 2006-09.


[5]Takeshi Uemoria, Tetsuo Nakab, Naoya Tadac, et al. Theoretical predictions of fracture and springback for high tensile strength steel sheet under stretch bending[J]. Procedia Engineering, 2017, 207:1594-1598.


[6]蒋浩民,陈新平,石磊,等. 先进高强度钢板的成形特性及其应用[J]. 塑性工程学报, 2009, 16(8): 183-186.


Jiang H M, Chen X P, Shi L, et al. Forming characteristics and application of advanced high strength steel[J]. Journal of Plasticity Engineering, 2009, 16(8): 183-186.


[7]孙继军,王才,张卫峰. 高强钢制件回弹控制方法[J]. 汽车工程师, 2013,5: 56-59.


Sun J J, Wang C, Zhang W F. Control method on high strength steel part resilience[J]. Auto Engineer, 2013,5: 56-59.


[8]王梦寒,岳宗敏,王根田. 考虑包辛格效应的高强钢U 型件冲压回弹规律分析[J]. 锻压技术,201641(2)58-63.


Wang M HYue Z MWang G T. Study on the springback law of high strength steel U-shaped part considering Bauschinger effect[J]. Forging & Stamping Technology, 201641(2)58-63.


[9]温媛媛,林建平,庞政,等. Q & P钢板滞弹性变形行为研究[J]. 塑性工程学报,2016, 23(6)131-136.


Wen Y Y, Lin J P, Pang Z, et al. Anelastic behavior of Q & P steel[J]. Journal of Plasticity Engineering2016, 23(6)131-136.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9