[1]刘欣玉,潘露,帅美荣. 基于Matlab的BP神经网络轧制力预报模型及应用[J].重庆科技学院学报:自然科学版, 2016, 18(6): 96-98,103.
Liu X Y, Pan L, Shuai M R. Prediction model and its application of BP neural network rolling force based on Matlab[J].Journal of Chongqing University of Science and Technology: Natural Sciences Edition,2016,18(6):96-98,103.
[2]杨景明,顾佳琪,闫晓莹,等.基于改进遗传算法优化BP网络的轧制力预测研究[J].矿冶工程,2015,35(1):111-115.
Yang J M, Gu J Q, Yan X Y, et al. Rolling force prediction based on BP network optimized by an improved genetic algorithm[J].Mining and Metallurgical Engineering,2015,35(1):111-115.
[3]马臣,李慕勤,闫振林.利用BP人工神经网络实现对轧机轧制力的预测[J].佳木斯大学学报:自然科学版,2008,26(6):785-788.
Ma C, Li M Q, Yan Z L. Mill rolling force prediction using BP artificial neural network [J]. Journal of Jiamusi University: Natural Science Edition, 2008, 26(6): 785-788.
[4]王智,张果,王剑平,等.基于PSOBP神经网络双机架炉卷轧机轧制力的预测[J].钢铁研究,2017,45(3):23-26.
Wang Z, Zhang G, Wang J P, et al. Prediction of rolling force for twostand steckel mill based on PSOBP neural network[J].Journal of Iron and Steel Research,2017,45(3):23-26.
[5]沈花玉, 王兆霞, 高成耀,等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报, 2008,24(5):13-15.
Shen H Y, Wang Z X, Gao C Y, et al. Determining the number of BP neural network hidden layer units [J]. Journal of Tianjin University of Technology, 2008, 24 (5): 13-15.
[6]刘莉,李传峰,张广军.基于BP神经网络斜轧穿孔轧制力的预测[J].山东冶金,2013,35(2):43-44.
Liu L, Li C F, Zhang G J. Rolling force prediction of rotary piercing based on BP neural network [J]. Shandong Metallurgy, 2013,35 (2): 43-44.
[7]Hu X L, Wang Z D, Yu J M, et al. Prediction of rolling load by BP neural networks integrating with selfadaption of traditional model[J]. Journal of Northeastern University, 2002, 23(11):1089-1092.
|