网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
薄壁曲面构件旋压成形工艺
英文标题:Spinning process for thin-walled spherical part
作者:侯令华 李新和 俞大辉 杨剑 
单位:中南大学 
关键词:曲面构件 旋压 起皱缺陷 起皱临界条件 法兰结构强化 有限元模拟 
分类号:TG156
出版年,卷(期):页码:2018,43(11):59-65
摘要:

由于薄壁大径厚比曲面构件法兰的弱刚性,旋压成形中极易出现法兰起皱失稳缺陷。运用能量守恒原理推导出薄壁曲面构件法兰起皱临界条件,提出了法兰结构强化旋压新工艺。利用MSC.Marc有限元分析软件,建立法兰结构强化旋压成形有限元模型,并通过仿真数据对比分析了有无施加法兰结构强化工艺之间的周向应力及径向应力,验证了法兰起皱临界条件的正确性。研究表明,采用法兰结构强化旋压新工艺,最大周向应力值明显降低,最大径向应力值无明显变化。旋压实验表明,曲面构件法兰强化旋压工艺能有效抑制曲面构件法兰起皱失稳。

Urinkle defect tends to occur in the flange region during the spinning process, because the flange for thin-walled spherical part with large diameter-thickness ratio has a lower rigidity. Therefore, the critical condition of flange wrinkling was deduced based on the law of energy conservation, and a new strengthening spinning process of flange structure was put forward. Then, a finite element simulation model of strengthening spinning for flange structure was established by finite element analysis software MSC.Marc. Through the comparison of simulation data, the circumferential stress and the radial stress with or without strengthening spinning for flange structure were analyzed, and the effectiveness of the critical condition of flange wrinkling was verified. The results show that the maximum circumferential stress value decreases obviously by the new strengthening spinning process of flange structure, and the maximum radial stress value has no obvious change. The spinning test shows the flange wrinkling can be effectively suppressed by the new strengthening spinning process of flange structure for spherical part.

基金项目:
国家重点基础研究发展计划(973)资助项目(2014CB046600)
作者简介:
侯令华(1993-),男,硕士研究生,E-mail:1321551005@qq.com;通讯作者:李新和(1957-),男,博士,教授,E-mail:1378239904@qq.com
参考文献:

[1]王颖. 焊接制造缺陷对运载火箭贮箱承载力影响的研究[D]. 天津:天津大学, 2014.


Wang Y. Research of the Influence of the Welding Manufacturing Defects on the Bearing Capacity of the Launch Vehicle Tank[D]. Tianjin:Tianjin University, 2014.


[2]邹小堤, 黄照, 桂林, 等. 大型数控强力旋压机关键零件制造工艺研究[J]. 武汉理工大学学报:交通科学与工程版, 2012, 36(04): 821-824.


Zou X D, Huang Z, Gui L, et al. Manufacturing process research on the key parts of large NC power spinning machine [J]. Journal of Wuhan University of Technology:Transportation Science & Engineering, 2012, 36 (4): 821-824.


[3]Yossifon S, Tirosh J, Kochavi E. On suppression of plastic buckling in hydroforming processes[J]. International Journal of Mechanical Sciences, 1984, 26(6-8): 389-402.


[4]俞大辉, 李新和, 周磊, 等.大减薄率薄壁半球形封头扩径旋压的失稳研究[J]. 塑性工程学报, 2016, 23(4): 48-54.


Yu D H , Li X H, Zhou L, et al.Diameter-expanding spinning instabilities of thin-walled semi-sphericalhead at a high thinning rate [J].Journal of Plastic Engineering, 2016, 23 (4): 48-54.


[5]史敏, 赵亦希, 孔庆帅, 等. 薄壁铝合金封头挡板辅助旋压成形方法[J].上海交通大学学报, 2015, 49 (10):1497-1503.


Shi M, Zhao Y X, Kong Q S, et al. Baffle-assistant spinning method for thin-walled aluminum alloy seal head [J]. Journal of Shanghai Jiaotong University, 2015, 49 (10):1497-1503.


[6]史敏.薄壁铝合金封头挡板辅助旋压成形新工艺[D].上海:上海交通大学,2015.


Shi M.Study on Baffle-assistant New Spinning Process for Thin-walled Alunmium Alloy Vessel Head[D]. Shanghai:Shanghai Jiaotong University , 2015.


[7]阴中炜, 张绪虎, 周晓建, 等. 大型薄壁铝合金半球壳体旋压成形工艺研究[J].材料科学与工艺,2013,21 (4):127-130.


Yin Z W, Zhang X H, Zhou X J, et al. The spinning process of large-scale thin-walled aluminum alloy hemisphere shell[J]. Material Science & Technology, 2013, 21(4):127-130.


[8]张行健, 张绪虎, 阴中炜, 等. 大长径比薄壁铝合金壳体成形工艺研究[J]. 热加工工艺, 2012, 41 (19): 33-36.


Zhang H J, Zhang X H, Yin Z W, et al. Research on forming technology of large aspect ratio and thin-wall aluminum shell[J]. Hot Working Technology, 2012, 41 (19): 33-36.


[9]葛光员. 铝合金曲母线型回转体零件精密旋压成形技术研究[D]. 哈尔滨:哈尔滨工业大学, 2010.


Ge G Y. Research on the Precision Spinning Technology of Curve Bus-type Aluminum Alloy Cylinder[D]. Harbin:Harbin Institute of Technology, 2010.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9