[1]Bruno C,De Cooman, Yuri Estrin, et al.Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283-362.
[2]Eva Mazancová, Karel Mazanec. Stacking fault energy in high manganese alloys [J]. Mater. Eng., 2009, 16(2): 26-31.
[3]Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel [J]. Mater. Sci. Eng. A, 2008, 483:184-187.
[4]Grssel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16(10):1391-1409.
[5]Timokhina I B, Hodgson P D, Pereloma E V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels [J]. Metallurgical & Materials Transactions A , 2004, 35(8):2331-2341.
[6]Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ Int. 2003,43(3):438-446.
[7]De Cooman B C. Structur-properties relationship in TRIP steels containing carbide-free bainite [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8(3):285-303.
[8]Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J]. Scr. Mater., 2008, 58(6):484-487.
[9]Jiménez J A, Frommeyer G. Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel [J]. Mater. Charact., 2010, 61(2):221-226.
[10]Shen Y F, Qiu C H, Wang L, et al. Effects of cold rolling on microstructure and mechanical properties of Fe-30Mn-3Si-4Al-0.093C TWIP steel [J]. Mater. Sci. Eng. A, 2013, 561(3):329-337.
[11]Hongbo Liu, Jianhua Liu, Bowei Wu, et al. Eect of Mn and Al contents on hot ductility of high alloy
Fe-xMn-C-yAl austenite TWIP steels [J]. Mater. Sci. Eng., 2017, 708:360-374.
[12]Jin J E, Lee Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel [J]. Acta Mater., 2012, 60: 1680-1688.
[13]Kang S, Jung Y S, Jun J H, et al. Effects of recrystallization annealing temperature on carbide precipitation, microstructure and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel [J]. Mater. Sci. Eng. A, 2010, 527 (3): 745-751.
[14]GB/T 228.1-2010,金属材料拉伸试验第1部分:室温试验方法 [S].
GB/T 228.1-2010,Metallic materials—Tensile testing—part 1: Method of test at room temperature [S].
[15]夏爽, 李慧, 周邦新, 等. 金属材料中退火孪晶的控制及利用——晶界工程研究 [J]. 自然杂志, 2010, 32(2):94-100.
Xia S, Li H, Zhou B X, et al. Control and utilization of annealing twins in metal materials-Research on grain boundary engineering [J]. Chinese Journal of Nature, 2010, 32(2):94-100.
[16]杨钢, 孙利军, 张丽娜, 等. 形变孪晶的消失与退火孪晶的形成机制 [J]. 钢铁研究学报, 2009, 21(2): 39-43.
Yang G, Sun L J, Zhang L N, et al. Annihilation of deformation twins and formation of annealing twins [J]. Journal of Iron and Steel Research, 2009, 21(2): 39-43.
[17]Hirsch J, Lücke K. Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—I. Description of rolling texture development in homogeneous CuZn alloys [J]. Acta Metallurgica, 1988, 36(11): 2863-2882.
[18]周小芬, 符仁钰, 李麟. Fe24Mn0.5C形变孪晶诱发塑性钢的显微组织和力学性能 [J]. 机械工程材料, 2009, 33(5): 22-25.
Zhou X F, Fu R Y, Li L. Microstructure and mechanical properties of Fe-24Mn-0.5C TWIP steel [J]. Materials for Mechanical Engineering, 2009, 33(5): 22-25.
[19]米振莉, 靖海涛, 江海涛, 等. Fe-Mn-Si-Al系和Fe-Mn-C系TWIP钢加工硬化行为 [J]. 北京科技大学学报, 2013, 35(4):465-473.
Mi Z L, Jing H T, Jiang H T, et al. Work hardening behavior of Fe-Mn-Si-Al and Fe-Mn-C steels [J]. Journal of University of Science and Technology Beijing, 2013, 35(4):465-473.
[20]Hamada A S, Karjalainen L P. Hot ductility behaviour of high-Mn TWIP steels [J]. Materials Science & Engineering A, 2011, 528(3):1819-1827.
|