网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
冷轧对Fe-16Mn-0.6C-2.5Al TWIP钢微观组织及力学性能的影响
英文标题:Influence of cold rolling on microstructure and mechanical properties of
作者:李世瀚 陈颖斌 陈长风 王晓霖 赵巍 李遵照 
单位:中国石油化工股份有限公司  广州建设工程质量安全检测中心有限公司 中国石油大学(北京) 
关键词:TWIP钢 冷轧 微观组织 力学性能 变形量 
分类号:TG142.1
出版年,卷(期):页码:2018,43(11):146-155
摘要:

利用金相显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)、X射线衍射仪(XRD)等仪器,研究了冷轧对Fe-16Mn-0.6C-2.5Al TWIP钢的微观组织和力学性能的影响。结果表明,随着冷轧变形量的增加,试样的屈服强度和抗拉强度升高,但伸长率降低,在拉伸过程中更难发生孪生。试样的加工硬化率随应变的增加总体呈下降趋势。当施加10%~50%冷变形时,含有退火孪晶的等轴晶粒被拉长,组织发生亚结构的演变,包含位错、孪晶及位错和孪晶的相互作用,依次出现滑移带、一次孪晶、二次孪晶、剪切带及微量ε马氏体。断口分析表明,随着冷轧变形量的增加,试样的断裂脆性增大。

The influences of cold rolling on microstructure and mechanical properties of Fe-16Mn-0.6C-2.5Al TWIP steel were studied by metallographic microscope (OM), transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the yield strength and tensile strength of specimens increase with the increasing of cold rolling deformation, whereas the elongation decreases, and the twins are more difficult to produce during stretching. Therefore, the working hardening rate of specimens decreases with the increasing of strain. When 10%-50% cold deformation is applied, the equiaxed grains containing annealed twins are elongated, and the evolution of substructures in the organization happens including dislocations, twins and the interaction of dislocations with twins. Furthermore, the slip bands, the first twins,  the secondary twins,  the shear bands and a small amount of ε martensite appear in sequence. The fractography shows that with the increaing of cold rolling deformation, the fractures become more and more brittle in the specimens.
 

基金项目:
国家重点研发计划资助(2017YFF0210404)
作者简介:
李世瀚(1991-),男,硕士,助理工程师,E-mail:lishihan.dshy@sinopec.com
参考文献:


[1]Bruno C,De Cooman, Yuri Estrin, et al.Twinning-induced plasticity (TWIP) steels
[J]. Acta Mater., 2018, 142: 283-362.



[2]Eva Mazancová, Karel Mazanec. Stacking fault energy in high manganese alloys
[J]. Mater. Eng., 2009, 16(2): 26-31.



[3]Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel
[J]. Mater. Sci. Eng. A, 2008, 483:184-187.



[4]Grssel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application
[J]. Int. J. Plast., 2000, 16(10):1391-1409.



[5]Timokhina I B, Hodgson P D, Pereloma E V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels
[J]. Metallurgical & Materials Transactions A , 2004, 35(8):2331-2341.



[6]Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes
[J]. ISIJ Int. 2003,43(3):438-446.



[7]De Cooman B C. Structur-properties relationship in TRIP steels containing carbide-free bainite
[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8(3):285-303.



[8]Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels
[J]. Scr. Mater., 2008, 58(6):484-487.



[9]Jiménez J A, Frommeyer G. Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel
[J]. Mater. Charact., 2010, 61(2):221-226.



[10]Shen Y F, Qiu C H, Wang L, et al. Effects of cold rolling on microstructure and mechanical properties of Fe-30Mn-3Si-4Al-0.093C TWIP steel
[J]. Mater. Sci. Eng. A, 2013, 561(3):329-337.



[11]Hongbo Liu, Jianhua Liu, Bowei Wu, et al. Eect of Mn and Al contents on hot ductility of high alloy

Fe-xMn-C-yAl austenite TWIP steels
[J]. Mater. Sci. Eng., 2017, 708:360-374.





[12]Jin J E, Lee Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel
[J]. Acta Mater., 2012, 60: 1680-1688.



[13]Kang S, Jung Y S, Jun J H, et al. Effects of recrystallization annealing temperature on carbide precipitation, microstructure and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel
[J]. Mater. Sci. Eng. A, 2010, 527 (3): 745-751.



[14]GB/T 228.1-2010,金属材料拉伸试验第1部分:室温试验方法
[S].


GB/T 228.1-2010,Metallic materials—Tensile testing—part 1: Method of test at room temperature
[S].



[15]夏爽, 李慧, 周邦新, 等. 金属材料中退火孪晶的控制及利用——晶界工程研究
[J]. 自然杂志, 2010, 32(2):94-100.


Xia S, Li H, Zhou B X, et al. Control and utilization of annealing twins in metal materials-Research on grain boundary engineering
[J]. Chinese Journal of Nature, 2010, 32(2):94-100.



[16]杨钢, 孙利军, 张丽娜, 等. 形变孪晶的消失与退火孪晶的形成机制
[J]. 钢铁研究学报, 2009, 21(2): 39-43.


Yang G, Sun L J, Zhang L N, et al. Annihilation of deformation twins and formation of annealing twins
[J]. Journal of Iron and Steel Research, 2009, 21(2): 39-43.



[17]Hirsch J, Lücke K. Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—I. Description of rolling texture development in homogeneous CuZn alloys
[J]. Acta Metallurgica, 1988, 36(11): 2863-2882.



[18]周小芬, 符仁钰, 李麟. Fe24Mn0.5C形变孪晶诱发塑性钢的显微组织和力学性能
[J]. 机械工程材料, 2009, 33(5): 22-25.


Zhou X F, Fu R Y, Li L. Microstructure and mechanical properties of Fe-24Mn-0.5C TWIP steel
[J]. Materials for Mechanical Engineering, 2009, 33(5): 22-25.



[19]米振莉, 靖海涛, 江海涛, 等. Fe-Mn-Si-Al系和Fe-Mn-C系TWIP钢加工硬化行为
[J]. 北京科技大学学报, 2013, 35(4):465-473.


Mi Z L, Jing H T, Jiang H T, et al. Work hardening behavior of Fe-Mn-Si-Al and Fe-Mn-C steels
[J]. Journal of University of Science and Technology Beijing, 2013, 35(4):465-473.



[20]Hamada A S, Karjalainen L P. Hot ductility behaviour of high-Mn TWIP steels
[J]. Materials Science & Engineering A, 2011, 528(3):1819-1827.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9