网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
SAF2507SDSS热冲压成形σ相析出行为研究
英文标题:Study on precipitation behavior of σ phase in hot stamping forming for SAF2507SDSS
作者:胡珊 蓝剑锋 
单位:南昌工学院 集美大学 
关键词:SAF2507SDSS板材 热冲压成形 σ相 析出规律 JMatPro软件 
分类号:TG142.1
出版年,卷(期):页码:2018,43(11):173-179
摘要:

采用1600 t XPS型液压压力机和成形模具对SAF2507SDSS板材进行850~1100 ℃的热冲压成形,使用光学显微镜、扫描电镜和X射线能谱仪并结合JMatPro软件的模拟计算,研究了SAF2507SDSS热冲压成形σ相的析出规律和热冲压成形不同阶段的时间和冷却速率对σ相的影响。结果表明:随着热冲压成形温度的升高,σ相在δ/γ相界处形核并朝着δ相区域生长,含量先增多后减少,σ相的析出机理为δ→σ+γ2,950 ℃是σ相敏感析出温度,1050 ℃是σ相稳定存在的温度上限;由于热冲压成形移动、形变和保压阶段的冷却速率均大于σ相临界析出的冷却速率,并且移动、形变和保压阶段的时间均小于σ相临界析出孕育时间,而σ相形核析出只发生在保温阶段,因此,热冲压成形对σ相形核析出无影响。

SAF2507SDSS plates were subjected to hot stamping forming between 850 ℃ to 1100 ℃ by 1600 t XPS hydraulic press and forming die, and the precipitation regularity of σ phase in hot stamping forming for SAF2507SDSS and the influences of time and cooling rate on σ phase in different stages of hot stamping forming were studied by optical microscope, scanning electron microscope, X-ray energy dispersive spectrometer and JMatPro software. The results show that with the increasing of temperature in hot stamping forming, σ phase nucleates at the δ/γ phase boundary and grows towards the δ phase region, and the contents of σ phase increase first and then decrease. Furthermore, the precipitation mechanism of σ phase is δ→σ+γ2,the most of sensitive precipitation temperature of σ phase is 950 ℃, and the stable temperature limit of σ phase is 1050 ℃. Because the cooling rate in the hot stamping forming movement, deformation, and holding pressure phases are all greater than the critical precipitation cooling rate of σ phase, the time of movement, deformation and holding pressure phases are all less than the σ phase incubating time, and the nucleation of σ phase occurs only in the heat preservation stage. Therefore, the hot stamping forming has no effect on the σ phase.

基金项目:
江西省工程实验室专项课题一般项目(SZZX-17-10)
作者简介:
胡珊(1990-),女,硕士,E-mail:PPS201411824016@126.com
参考文献:


[1]姜大鑫, 武文华, 胡平, 等. 高强度钢板热成形热、力、相变数值模拟分析
[J]. 机械工程学报, 2012, 48(12):18-23.


Jiang D X, Wu W H, Hu P, et al. Thermo-mechanical-martensitic transformation numerical simulation of high strength steel in hot forming
[J]. Journal of Mechanical Engineering, 2012, 48(12):18-23.



[2]马宁. 高强度钢板热成形技术若干研究
[D]. 大连: 大连理工大学, 2011.


Ma N. Research on Hot Forming of High Strength Steel
[D]. Dalian: Dalian University of Technology, 2011.



[3]徐伟力, 艾健, 罗爱辉, 等. 钢板热冲压新技术介绍
[J]. 塑性工程学报, 2009, 16(4):39-43.


Xu W L, Ai J, Luo A H, et al. Introduction of sheet metal hot-forming
[J]. Journal of Plasticity Engineering, 2009, 16(4):39-43.



[4]Bergman G, Oldenburg M. A finite element model for thermomechanical analysis of sheet metal forming
[J]. International Journal for Numerical Methods in Engineering, 2004, 59(9): 1167-1186.



[5]李俊琛, 顾自有, 胡彦昭, 等. 22MnB5高强板冲压成形热力耦合数值模拟
[J]. 兰州理工大学学报, 2017, 43(1):15-18.


Li J C, Gu Z Y, Hu Y Z, et al. Numerical simulationg of thermal-mechanical coupling during stamping forming 22MnB5

high strength plates
[J]. Journal of Lanzhou University of Technology. 2017, 43(1):15-18.



[6]苏建民. 奥氏体化时间对22MnB5热压成形钢组织和性能的影响
[J]. 材料保护, 2017, 50(11): 86-88.


Su J M. Influence of austenitizing time on microstructure and mechanical properties of 22MnB5 hot formed steel
[J]. Materials Protection, 2017, 50(11): 86-88.



[7]倪朝敏, 李小平, 周小燕, 等. 超高强度钢热冲压曲底槽形件不同成形速度对制件强度影响规律研究
[J]. 重庆理工大学学报, 2017, (6): 64-69.


Ni C M, Li X P, Zhou X Y, et al. Ultra high strength steel hot stamping research rulesupon the impact on the performance of the product under different molding curved bottom trough speed
[J]. Journal of Chongqing Institute of Technology, 2017, (6): 64-69.



[8]郭幼丹, 吴春笃, 程晓农. 基于相变与回弹的热冲压成形冷却过程控制
[J]. 塑性工程学报, 2011, 18(5): 70-73.


Guo Y D, Wu C D, Chen X N. The cooling process control based on phase changing process and springback during hot stamping forming
[J]. Journal of Plasticity Engineering, 2011, 18(5): 70-73.



[9]吴亚平, 郭幼丹, 王刚. BR1500HS防撞梁热成形后材料抗冲击性能
[J]. 塑性工程学报, 2015, 22(6):119-123.


Wu Y P, Guo Y D, Wang G. Research on impact resistant performance of BR1500HS anticollision beam after hot forming
[J].Journal of Plasticity Engineering, 2015, 22(6): 119-123.





[10]张云, 黎军顽, 李爽, 等. 模具热导率对热冲压成形工艺影响的数值研究
[J]. 材料热处理学报, 2015, 36(s2):234-241.


Zhang Y, Li J W, Li S,et al. Influence of thermal conductivity of die on hot stamping process by numerical simulation
[J]. Transactions of Materials and Heat Treatment, 2015, 36(s2): 234-241.



[11]蓝剑锋, 郭幼丹, 梁昱晨, 等. SAF2507双相不锈钢热成形工艺下的析出相与力学性能
[J]. 船舶工程, 2017, 39(10): 52-56.


Lan J F, Guo Y D, Liang Y C, et al. Precipitation phase and mechanical properties of SAF2507 duplex stainless steel after hot forming
[J]. Ship Engineering, 2017, 39(10): 52-56.



[12]郭幼丹, 程晓农, 蓝剑锋, 等. 热成形SAF2507双相不锈钢析出相与耐腐蚀性能
[J]. 材料热处理学报, 2017, 38(10):60-66.


Guo Y D, Chen X N, Lan J F, et al. Precipitated phases and corrosion resistance of hot forming SAF2507 duplex stainless steel
[J]. Transactions of Materials and Heat Treatment, 2017,38(10):60-66.



[13]陈雨来, 罗照银, 李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响
[J]. 金属学报, 2015, 51(9):1085-1091.


Chen Y L, Luo Z Y, Li J Y. Effect of solution temperature on microstructure and pitting corrosion resistance of S32760 duplex stainless steel
[J]. Acta Metallurgica Sinica, 2015, 51(9):1085-1091.



[14]Sun Q, Wang J, Li H B, et al. Chi phase after short-term aging and corrosion behavior in 2205 duplex stainless steel
[J]. Journal of Iron and Steel Research, International, 2016, 23(10):1071-1079.



[15]Luo H, Li X G, Dong C F, et al. Effect of solution treatment on pitting behavior of 2205 duplex stainless steel
[J]. Arabian Journal of Chemistry, 2017, 10(S1): S90-S94.



[16]邹德宁, 韩英, 李姣, 等. 热处理对2205双相不锈钢焊接接头力学性能的影响
[J]. 机械工程学报, 2011, 47(2): 85-89.


Zou D N, Han Y, Li J, et al. Influence of heat treatment on mechanical properties of 2205 duplex stainless steel welds
[J]. Journal of Mechanical Engineering, 2011, 47(2): 85-89.



[17]王冬, 邹德宁, 韩英, 等. 254SMo和2507超级不锈钢中的σ析出相
[J]. 材料热处理学报, 2016, 37(5):103-109.


Wang D, Zou D N, Han Y, et al. Precipitation of σ-phase in 254SMo and 2507 super stainless steels
[J]. Transactions of Materials and Heat Treatment, 2016, 37(5):103-109.



[18]石巨岩, 昌敬源, 谢贵生, 等. 固溶温度对2205双相不锈钢焊缝组织与韧性的影响
[J]. 材料热处理学报, 2009, 30(4):69-72.


Shi J Y, Chang J Y, Xie G S, et al. Influence of solution temperature on microstructure and toughness of weld joint in 2205 duplex stainless steel
[J]. Transactions of Materials and Heat Treatment, 2009, 30(4):69-72.



[19]赵科巍. 2205双相不锈钢的高温变形过程及其机理研究
[D]. 兰州: 兰州理工大学, 2010.


Zhao K W. Study on Deformation Behavior of 2205 Duplex Stainless Steel
[D]. Lanzhou: Lanzhou University of Technology, 2010.



[20]陈雷, 王龙妹, 杜晓建, 等. 2205双相不锈钢的高温变形行为
[J]. 金属学报, 2010, (1): 52-56.


Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel
[J]. Acta Metallurgica Sinica, 2010, (1):52-56.



[21]王月香, 刘振宇, 王国栋, 等. 2205双相不锈钢热变形过程中形变诱导相变的探讨
[J]. 轧钢, 2009, 26(2):6-9.


Wang Y X, Liu Z Y, Wang G D, et al. Discussion on the strain induced transformation during hot deformation process of 2205 duplex stainless steel
[J]. Steel Rolling, 2009, 26(2):6-9.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9