网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
镍基合金GH625管材用挤压模设计与应用
英文标题:Design and application of extrusion die used in nickel based alloy GH625 tube
作者:拓雷锋1 2 李志春2 周根树1 楚志兵3 李强2 
单位:1.西安交通大学 金属材料强度国家重点实验室 2.山西太钢不锈钢钢管有限公司 3.太原科技大学 材料科学与工程学院 
关键词:镍基合金 GH625 热挤压 平模 锥模 管材 
分类号:TG372
出版年,卷(期):页码:2018,43(12):104-108
摘要:

 采用FEM方法,对高温镍基合金GH625管材的平模和锥模两种不同挤压工艺进行模拟,分析了应力和应变分布特点。在挤出管材的壁厚方向上取5个点追踪应力、应变、应变速率和金属流动速率的变化规律,通过应变变化规律分析管材壁厚方向上的分层缺陷,对比平模和锥模两种不同模型设计对挤压载荷的影响。结果表明,锥模有利于降低挤压力和减小挤压过程中壁厚方向上的金属流速差。采用60 MN卧式挤压机进行平模和锥模两种不同挤压模设计的实际挤压生产试验,验证了模拟分析结果的正确性,锥模可以解决GH625管材壁厚方向上的分层。

 Two different extrusion processes with flat die and cone die for nickel based alloy GH625 tube at high temperature were simulated by FEM method, and the stress and strain distribution characteristics were analyzed. Then, five points in the direction of wall thickness of extruded tube were selected to track the changes of stress, strain, strain rate and metal flow rate, and the lamination defects in the direction of wall thickness of tube were analyzed by the strain change law.  The influences of different pattern designs of flat die and cone die on the extrusion loads were compared. The result shows that the cone die is good for reducing extrusion force and decreasing the difference of metal flow rate in the direction of wall thickness of tube during extrusion process. The actual extrusion tests with flat die and cone die were conducted by 60 MN horizontal extruder. Furthermore, the simulation results were well verified by the production test results, and the lamination in the direction of wall thickness of GH625 tube was solved by the extrusion with cone die.

基金项目:
基金项目:国家自然科学基金资助项目(U1710113)
作者简介:
作者简介:拓雷锋(1984-),男,博士研究生 Email:tuochaofeng@163.com 通讯作者:周根树(1964-),男,博士,教授 Email:zhougenshuxjtu@163.com
参考文献:

 参考文献:


 


[1]吾志岗,李德富. GH625镍基合金的高温压缩变形行为及组织演变
[J]. 中国有色金属学报, 2010, 20(7): 1321-1327.

 

Wu Z G, Li D F. Hot compression deformation behaviors and microstructure evolution of GH625 Nibased alloy
[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(7): 1321-1327.

 


[2]李德富,吾志岗,郭胜利,等. GH625镍基合金高温塑性变形加工图研究
[J]. 稀有金属材料与工程, 2012, 41(6):1026-1031.

 

Li D F, Wu Z G, Guo S L, et al. Study on the processing map of GH625 Nibased alloy deformed at high temperature
[J]. Rare Metal Material and Engineering, 2012, 41(6):1026-1031.

 


[3]蔡梅,刘建平,吴香菊,等. GH625合金锻造工艺研究
[J]. 沈阳航空航天大学学报, 2011, 28(4): 52-59.

 

Cai M, Liu J P, Wu X J, et al. Technical study on GH625 alloy forging
[J]. Journal of Shenyang Aerospace University, 2011, 28(4): 52-59.

 


[4]张春林,王新鹏,宁天信,等. UNS N06625合金热成形工艺的模拟试验和分析
[J]. 特殊钢, 2017, 38(2): 1-5.

 

Zhang C L, Wang X P, Ning T X, et al. Simulation test and analysis on hot forming process of alloy UNS N06625
[J]. Special Steel, 2017, 38(2): 1-5.

 


[5]吴昊,安祯钰. TP321不锈钢管材分层缺陷产生的原因及其超声波检测
[J]. 石油工程建设,2016, 42(4): 87-89.

 

Wu H, An Z Y. Forming reason and ultrasonic of lamination defects in TP321 stainless steel pipes
[J]. Petroleum Engineering Construction,2016, 42(4): 87-89.

 


[6]党利,杨合,郭良刚,等. 基于FEM的INCONEL625难变形合金大型厚壁管挤压极限图研究
[J]. 稀有金属材料与工程, 2014, 43(9): 2130-2135.

 

Dang L, Yang H, Guo L G, et al. Extrusion limit map of largescale thickwalled INCONEL625 alloy pipe using FE method
[J]. Rare Metal Material and Engineering, 2014, 43(9): 2130-2135.

 


[7]郭青苗,李德富,郭胜利,等. GH625合金热变形过程的动态再结晶行为研究
[J]. 机械工程学报, 2011, 47(6): 51-56.

 

Guo Q M, Li D F, Guo S L, et al. Research on dynamic recrystallization behavior of GH625 superalloy during hot deformation
[J]. Journal of Mechanical Engineering, 2011, 47(6): 51-56.

 


[8]欧新哲,姚雷,黄妍凭. 固溶处理对UNS N06625合金组织和力学性能的影响
[J]. 金属功能材料, 2016, 23(2): 55-58.

 

Ou X Z, Yao L, Huang Y P. UNS N06625 alloy  solution treatment  microstructure  mechanical properties
[J]. Metallic Functional Materials, 2016, 23(2): 55-58.

 


[9]党利,杨合,郭良刚,等. Inconel 625大型厚壁管挤压损伤行为仿真
[J]. 塑性工程学报,2015, 22(5): 29-34.

 

Dang L, Yang H, Guo L G, et al. Simulation research of damage behavior of largescale thickwalled Inconel 625 pipe during extrusion process
[J]. Journal of Plasticity Engineering,2015, 22(5): 29-34.


[10]王宝顺,董建新,张麦仓. G3镍基合金热挤压模具型腔优化设计
[J]. 稀有金属材料与工程, 2011, 40(7):1157-1162.

 

Wang B S, Dong J X, Zhang M C. Optimization design of die profile during hot extrusion of G3 nickelbase alloy
[J]. Rare Metal Material and Engineering, 2011, 40(7):1157-1162.

 


[11]毛艺伦,张清东,孙朝阳. 高温合金管材挤压变形及挤压工艺的流函数法研究
[J].北京科技大学学报, 2011, 33(4): 449-454.

 

Mao Y L, Zhang Q D, Sun C Y. Study on extrusion forming of superalloy tubes by flow fraction method
[J]. Journal of University of Science and Technology Beijing, 2011, 33(4): 449-454.

 


[12]王忠堂,张士宏,程明,等. 基于挤压实验的高温合金IN625本构关系模型
[J]. 热加工工艺, 2014, 43(3): 81-83.

 

Wang Z T, Zhang S H, Cheng M, et al. Constitutive model of superalloy IN625 based on extrusion test
[J]. Hot Working Technology, 2014, 43(3): 81-83.

 


[13]孙海伟,范永革,易勇. 镍基管材热挤压中玻璃润滑机理的数值模拟研究
[J]. 热加工工艺, 2011, 40(17): 127-129.

 

Sun H W, Fan Y G, Yi Y. Numerical simulation study of Nibased pipe in hot extrusion for glass lubrication mechanism
[J]. Hot Working Technology, 2011, 40(17): 127-129.

 


[14]Hansson S, Jansson T. Sensitivity analysis of a finite element model for the simulation of stainless steel tube extrusion
[J]. J. Mater. Proc. Tech., 2010,210:1386-1396.

 


[15]Wang L A. Manufacturing Engineering for Hard Wrought Alloy Forgings
[M]. Beijing: National Defence Industry Press, 2005.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9