[1]Kim B, Chan H P, Kim H S, et al. Grain refinement and improved tensile properties of Mg3Al1Zn alloy processed by lowtemperature indirect extrusion[J]. Scripta Materialia, 2014, 76: 21-24.
[2]Shang X, Zhou J, Wang X, et al. Optimizing and identifying the process parameters of AZ31 magnesium alloy in hot compression on the base of processing maps[J]. Journal of Alloys and Compounds, 2015, 629: 155-161.
[3]陈振华, 夏伟军, 严红革, 等. 变形镁合金[M]. 北京: 化学工业出版社, 2005.
Chen Z H, Xia W J, Yan H G, et al. Wrought Magnesium Alloys[M]. Beijing: Chemical Industry Press, 2005.
[4]文怀兴, 刘桂芳, 史鹏涛. AZ31B镁合金板热渐进成形的精度研究[J]. 锻压技术, 2017, 42(4):59-62.
Wen H X, Liu G F, Shi P T, et al. Study on the accuracy of hot incremental forming for magnesium alloy sheet AZ31B[J]. Forging & Stamping Technology, 2017, 42(4):59-62.
[5]王荣, 范立坤, 张平,等. 镁合金板料制备技术的研究进展[J]. 材料导报, 2008, 22(3):94-98.
Wang R, Fan L K, Zhang P, et al. Research progress in preparation of magnesium alloy sheet[J]. Materials Review, 2008, 22(3):94-98.
[6]胥广亮, 陈国清, 周文龙, 等. 等径角挤压对AZ31镁合金组织及力学性能的影响[J]. 材料工程, 2011, (2): 69-72.
Xu G L, Chen G Q, Zhou W L, et al. Effect of equal channel angular extrusion on the microstructure and mechanical properties of AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2011, (2): 69-72.
[7]伍贤鹏. 预变形-锥台强剪切挤压变形对AZ31镁合金组织及力学性能的影响[D]. 湘潭:湖南科技大学, 2017.
Wu X P. Influence of Predeformation and Frustum Shearing Extrusion Deformation on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy[D]. Xiangtan: Hunan University of Science and Technology, 2017.
[8]Kang J Y, Bacroix B, Brenner R. Evolution of microstructure and texture during planar simple shear of magnesium alloy[J]. Scripta Materialia, 2012, 66(9): 654-657.
[9]Chang L L, Wang Y N, Zhao X, et al. Grain size and texture effect on compression behavior of hotextruded Mg3Al1Zn alloys at room temperature[J]. Materials Characterization, 2009, 60(9): 991-994.
[10]Mahmoodkhani Y, Wells M A. Coextrusion process to produce AlMg eutectic clad magnesium products at elevated temperatures[J]. Journal of Materials Processing Technology, 2016, 232:175-183.
[11]Chang L L, Wang Y N, Zhao X, et al. Microstructure and mechanical properties in an AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion[J]. Materials Science and Engineering A, 2008, 496(1-2): 512-516.
[12]Yang Q, Jiang B, He J, et al. Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process[J]. Materials Science and Engineering A, 2014, 612: 187-191.
[13]Pan F S, Wang Q, Jiang B, et al. An effective approach called the composite extrusion to improve the mechanical properties of AZ31 magnesium alloy sheets[J]. Materials Science and Engineering A, 2016, 655: 339-345.
[14]程伟丽, 霍瑞, 陆杨婕, 等. 超细晶反挤压Mg8Sn1Al1Zn合金的组织和性能[J]. 稀有金属材料与工程, 2014, 43(11): 2824-2828.
Cheng W L, Huo R, Lu Y J, et al. Microstructure and mechanical properties of indirectextruded Mg8Sn1Al1Zn alloy with ultrafine grained structure[J]. Rare Metal Materlals and Engineering, 2014,43(11): 2824-2828.
[15]王强, 张治民. 坯料温度对AZ31镁合金反挤成形的影响[J]. 材料工程, 2006, (Z1): 310-312,316.
Wang Q, Zhang Z M. Effect of billet temperature on the backward extrusion of AZ31 Mg alloy[J]. Journal of Materials Engineering, 2006, (Z1): 310-312,316.
[16]Chalay A. An investigation into the microstructure/strain pattern relationship in backward extruded AZ91 magnesium alloy[J]. Materials and Design, 2013, 820(9): 820-827.
[17]Cheng W L, Huo R, Tian Q W, et al. Dependence of microstructure, texture and tensile properties on working conditions in indirectextruded Mg6Sn alloys[J]. Rare Metal Materials and Engineering, 2015, 44(9): 2132-2137.
[18]FatemiVarzaneh S M, ZareiHanzaki A. Processing of AZ31 magnesium alloy by a new noble severe plastic deformation method[J]. Materials Science and Engineering A, 2011, 528(3): 1334-1339.
[19]Yuan R S, Wu Z, Cai H, et al. Effects of extrusion parameters on tensile properties of magnesium alloy tubes fabricated via hydrostatic extrusion integrated with circular ECAP[J]. Materials and Design, 2016, 101:131-136.
[20]Qiao X G, Ying T, Zheng M Y, et al. Microstructure evolution and mechanical properties of nanoSiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP)[J]. Materials Characterization, 2016, 121:222-230.
[21]Beyerlein I J, Toth L S. Texture evolution in equalchannel angular extrusion[J]. Progress in Materials Science, 2009, 54(4): 427-510.
[22]Yapici G G, Karaman I. Common trends in texture evolution of ultrafinegrained hcp materials during equal channel angular extrusion[J]. Materials Science and Engineering A, 2009, 503(1-2): 78-81.
[23]Yoon S C, Quang P, Hong S I, et al. Die design for homogeneous plastic deformation during equal channel angular pressing[J]. Journal of Materials Processing Technology, 2007, 187(3): 46-50.
[24]Yan K, Sun Y S, Bai J, et al. Microstructure and mechanical properties of ZA62 Mg alloy by equalchannel angular pressing[J]. Materials Science and Engineering A, 2011, 528(3): 1149-1153.
[25]Ramin Jahadi, Mohammad Sedighi, Hamid Jahed. ECAP effect on the microstructure and mechanical properties of AM30 magnesium alloy[J]. Materials Science and Engineering A, 2014, 593: 178-184.
[26]Lin H K, Huang J C, Langdon T G. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP[J]. Materials Science and Engineering A, 2005, 402(1-2): 250-257.
[27]Kim H K, Kim W J. Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation[J]. Materials Science and Engineering A, 2004, 385(1-2): 300-308.
[28]Máthis K, Gubicza J, Nam N H. Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing[J]. Journal of Alloys and Compounds, 2005, 394(1-2): 194-199.
[29]Kulyasova O, Islamgaliev R, Mingler B, et al. Microstructure and fatigue properties of the ultrafinegrained AM60 magnesium alloy processed by equalchannel angular pressing[J]. Materials Science and Engineering A, 2009, 503(1-2): 176-180.
[30]Akbaripanah F, FereshtehSaniee F, Mahmudi R, et al. Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing[J]. Materials and Design, 2013, 43: 31-39.
[31]Jahadi R, Sedighi M, Jahed H. ECAP effect on the microstructure and mechanical properties of AM30 magnesium alloy[J]. Materials Science and Engineering A, 2014, 593: 178-184.
[32]Arab S M, Akbarzadeh A. The effect of equal channel angular pressing process on the microstructure of AZ31 Mg alloy strip shaped specimens[J]. Journal of Magnesium and Alloys, 2013, 1(2): 145-149.
[33]任国成, 赵国群. 变形温度对 AZ31 镁合金等通道转角挤压变形行为的影响[J]. 中国有色金属学报, 2013, (7): 1789-1795.
Ren G C, Zhao G Q. Effects of deformation temperature on deformation behavior of AZ31 magnesium alloy during equal channel angular pressing[J]. The Chinese Journal of Nonferrous Metals, 2013, (7): 1789-1795.
[34]SepahiBoroujeni S, FereshtehSaniee F. The influences of the expansion equal channel angular extrusion operation on the strength and ductility of AZ80 magnesium alloy[J]. Materials Science and Engineering A, 2015, 636:249-253.
[35]Hu H J, Zhang D F, Yang M B. Grain refinement in AZ31 magnesium alloy rod fabricated by extrusionshearing severe plastic deformation process[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2): 243-249.
[36]Hu H J. Physical and numerical simulation of deformation behaviors of extrusionshear for magnesium alloy[J]. Rare Metal Materlals and Engineering, 2013, 42(5): 957-961.
[37]Chen Q, Zhao Z, Shu D, et al. Microstructure and mechanical properties of AZ91D magnesium alloy prepared by compound extrusion[J]. Materials Science and Engineering A, 2011, 528(10-11): 3930-3934.
[38]Lu L W, Liu C M, Zhao J, et al. Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method[J]. Journal of Alloys and Compounds, 2015, 628: 130-134.
[39]卢立伟, 赵俊, 陈胜泉, 等. 镁合金正挤压-扭转变形的数值模拟与实验研究[J]. 中国有色金属学报, 2015, 25(9): 2350-2357.
Lu L W, Zhao J, Chen S Q, et al. Numerical simulation and experimental research of AZ31 Mg alloys processed by direct extrusion and torsional deformation[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9): 2350-2357.
[40]Li F, Zeng X, Bian N. Microstructure of AZ31 magnesium alloy produced by continuous variable crosssection direct extrusion (CVCDE)[J]. Materials Letters, 2014, 135(10): 79-82.
[41]Li F, Shi W, Bian N, et al. Effect of Accumulative strain on grain refinement and strengthening of ZM6 magnesium alloy during continuous variable crosssection direct extrusion[J]. Acta Metallurgica Sinica, 2015, 28(5): 649-655.
[42]Mahmoodkhani Y, Wells M A. Coextrusion process to produce AlMg eutectic clad magnesium products at elevated temperatures[J]. Journal of Materials Processing Technology, 2016, 232: 175-183.
[43]Feng B, Xin Y C, Yu H H, et al. Mechanical behavior of a Mg/Al composite rod containing a soft Mg sleeve and an ultra hard Al core[J]. Materials Science and Engineering A, 2016, 675:204-211.
[44]吴洋. 利用挤压制备镁/铝合金复合板材的组织与性能研究[D]. 重庆:重庆大学, 2016.
Wu Y. Microstructure and Mechanical Properties of Mg/Al Composite Laminates Fabricated by Extrusion[D]. Chongqing:Chongqing University, 2016.
[45]Priel E, Ungarish Z, Navi N U. Coextrusion of a Mg/Al composite billet: A computational study validated by experiments[J]. Journal of Materials Processing Technology, 2016, 236:103-113.