网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
镁合金挤压变形工艺的研究进展
英文标题:Research progress of extrusion process for magnesium alloy
作者:卢立伟 盛坤 伍贤鹏 尹振入 
单位:湖南科技大学 中南大学 
关键词:镁合金  挤压变形  动态再结晶  晶粒细化  力学性能 
分类号:TG376
出版年,卷(期):页码:2019,44(1):1-9
摘要:

镁合金是目前金属结构材料中最轻的材料,挤压变形是镁合金变形最常用的方法,在提高镁合金综合性能方面具有显著的作用。综述了镁合金挤压变形的传统挤压方法和非传统挤压方法,其中传统挤压方法包括正挤压、反挤压、等通道转角挤压等,非传统挤压方法包括等通道转角膨胀挤压、复合挤压、连续变截面直接挤压等;介绍了挤压变形在制备铝/镁合金复合材料等方面取得的研究进展;分析了不同挤压变形方法在细化镁合金晶粒、提高力学性能等方面的作用和机理。提出采用创新的挤压变形方法,制备出不仅具有优异的力学性能,而且兼备较高的抗腐蚀性能的铝/镁合金复合材料,将是镁合金挤压变形技术未来发展的趋势。

Magnesium alloy is the lightest metal structure material at present, and the extrusion process is the most commonly used deformation method for magnesium alloy. Therefore, it plays an important role in improving the comprehensive properties of magnesium alloy. Then, the traditional extrusion methods and nontraditional extrusion methods of magnesium alloy were reviewed, and the traditional extrusion methods include forward extrusion, backward extrusion and equal channel angle pressing etc., and the nontraditional extrusion methods include equal channel angle expansion extrusion, compound extrusion, continuous variable crosssection direct extrusion etc. Furthermore, the research progress of extrusion process in the preparation of Al/Mg alloy composites was introduced, and the effect and mechanism on grain refinement and mechanical properties improvement of magnesium alloy were studied by different extrusion deformation methods. Finally, an innovative extrusion deformation method was proposed to prepare Al/Mg alloy composites with excellent mechanical properties and high corrosion resistance, which would be the future development trend of extrusion technology for magnesium alloy.
 

基金项目:
国家自然科学基金资助项目(51505143);湖南省教育厅优秀青年基金资助项目(17B089);中国博士后科学基金(2016T90759 & 2014M562128)
作者简介:
卢立伟(1983-),男,博士,副教授,E-mail:cqulqyz@126.com
参考文献:


[1]Kim B, Chan H P, Kim H S, et al. Grain refinement and improved tensile properties of Mg3Al1Zn alloy processed by lowtemperature indirect extrusion[J]. Scripta Materialia, 2014, 76: 21-24.


[2]Shang X, Zhou J, Wang X, et al. Optimizing and identifying the process parameters of AZ31 magnesium alloy in hot compression on the base of processing maps[J]. Journal of Alloys and Compounds, 2015, 629: 155-161.


[3]陈振华, 夏伟军, 严红革, . 变形镁合金[M]. 北京: 化学工业出版社, 2005.


Chen Z H, Xia W J, Yan H G, et al. Wrought Magnesium Alloys[M]. Beijing: Chemical Industry Press, 2005.


[4]文怀兴, 刘桂芳, 史鹏涛. AZ31B镁合金板热渐进成形的精度研究[J]. 锻压技术, 2017, 42(4):59-62.


Wen H X, Liu G F, Shi P T, et al. Study on the accuracy of hot incremental forming for magnesium alloy sheet AZ31B[J]. Forging & Stamping Technology, 2017, 42(4):59-62.


[5]王荣, 范立坤, 张平,. 镁合金板料制备技术的研究进展[J]. 材料导报, 2008, 22(3):94-98.


Wang R, Fan L K, Zhang P, et al. Research progress in preparation of magnesium alloy sheet[J]. Materials Review, 2008, 22(3):94-98.


[6]胥广亮, 陈国清, 周文龙, . 等径角挤压对AZ31镁合金组织及力学性能的影响[J]. 材料工程, 2011, (2): 69-72.


Xu G L, Chen G Q, Zhou W L, et al. Effect of equal channel angular extrusion on the microstructure and mechanical properties of AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2011, (2): 69-72.


[7]伍贤鹏. 预变形-锥台强剪切挤压变形对AZ31镁合金组织及力学性能的影响[D]. 湘潭:湖南科技大学, 2017.


Wu X P. Influence of Predeformation and Frustum Shearing Extrusion Deformation on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy[D]. Xiangtan: Hunan University of Science and Technology, 2017.


[8]Kang J Y, Bacroix B, Brenner R. Evolution of microstructure and texture during planar simple shear of magnesium alloy[J]. Scripta Materialia, 2012, 66(9): 654-657.


[9]Chang L L, Wang Y N, Zhao X, et al. Grain size and texture effect on compression behavior of hotextruded Mg3Al1Zn alloys at room temperature[J]. Materials Characterization, 2009, 60(9): 991-994.


[10]Mahmoodkhani Y, Wells M A. Coextrusion process to produce AlMg eutectic clad magnesium products at elevated temperatures[J]. Journal of Materials Processing Technology, 2016, 232:175-183.


[11]Chang L L, Wang Y N, Zhao X, et al. Microstructure and mechanical properties in an AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion[J]. Materials Science and Engineering A, 2008, 496(1-2): 512-516.


[12]Yang Q, Jiang B, He J, et al. Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process[J]. Materials Science and Engineering A, 2014, 612: 187-191.


[13]Pan F S, Wang Q, Jiang B, et al. An effective approach called the composite extrusion to improve the mechanical properties of AZ31 magnesium alloy sheets[J]. Materials Science and Engineering A, 2016, 655: 339-345.


[14]程伟丽, 霍瑞, 陆杨婕, . 超细晶反挤压Mg8Sn1Al1Zn合金的组织和性能[J]. 稀有金属材料与工程, 2014, 43(11): 2824-2828.


Cheng W L, Huo R, Lu Y J, et al. Microstructure and mechanical properties of indirectextruded Mg8Sn1Al1Zn alloy with ultrafine grained structure[J]. Rare Metal Materlals and Engineering, 2014,43(11): 2824-2828.


[15]王强, 张治民. 坯料温度对AZ31镁合金反挤成形的影响[J]. 材料工程, 2006, (Z1): 310-312,316.


Wang Q, Zhang Z M. Effect of billet temperature on the backward extrusion of AZ31 Mg alloy[J]. Journal of Materials Engineering, 2006, (Z1): 310-312,316.


[16]Chalay A. An investigation into the microstructure/strain pattern relationship in backward extruded AZ91 magnesium alloy[J]. Materials and Design, 2013, 820(9): 820-827.


[17]Cheng W L, Huo R, Tian Q W, et al. Dependence of microstructure, texture and tensile properties on working conditions in indirectextruded Mg6Sn alloys[J]. Rare Metal Materials and Engineering, 2015, 44(9): 2132-2137.


[18]FatemiVarzaneh S M, ZareiHanzaki A. Processing of AZ31 magnesium alloy by a new noble severe plastic deformation method[J]. Materials Science and Engineering A, 2011, 528(3): 1334-1339.


[19]Yuan R S, Wu Z, Cai H, et al. Effects of extrusion parameters on tensile properties of magnesium alloy tubes fabricated via hydrostatic extrusion integrated with circular ECAP[J]. Materials and Design, 2016, 101:131-136.


[20]Qiao X G, Ying T, Zheng M Y, et al. Microstructure evolution and mechanical properties of nanoSiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP)[J]. Materials Characterization, 2016, 121:222-230.


[21]Beyerlein I J, Toth L S. Texture evolution in equalchannel angular extrusion[J]. Progress in Materials Science, 2009, 54(4): 427-510.


[22]Yapici G G, Karaman I. Common trends in texture evolution of ultrafinegrained hcp materials during equal channel angular extrusion[J]. Materials Science and Engineering A, 2009, 503(1-2): 78-81.


[23]Yoon S C, Quang P, Hong S I, et al. Die design for homogeneous plastic deformation during equal channel angular pressing[J]. Journal of Materials Processing Technology, 2007, 187(3): 46-50.


[24]Yan K, Sun Y S, Bai J, et al. Microstructure and mechanical properties of ZA62 Mg alloy by equalchannel angular pressing[J]. Materials Science and Engineering A, 2011, 528(3): 1149-1153.


[25]Ramin Jahadi, Mohammad Sedighi, Hamid Jahed. ECAP effect on the microstructure and mechanical properties of AM30 magnesium alloy[J]. Materials Science and Engineering A, 2014, 593: 178-184.


[26]Lin H K, Huang J C, Langdon T G. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP[J]. Materials Science and Engineering A, 2005, 402(1-2): 250-257.


[27]Kim H K, Kim W J. Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation[J]. Materials Science and Engineering A, 2004, 385(1-2): 300-308.


[28]Máthis K, Gubicza J, Nam N H. Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing[J]. Journal of Alloys and Compounds, 2005, 394(1-2): 194-199.


[29]Kulyasova O, Islamgaliev R, Mingler B, et al. Microstructure and fatigue properties of the ultrafinegrained AM60 magnesium alloy processed by equalchannel angular pressing[J]. Materials Science and Engineering A, 2009, 503(1-2): 176-180.


[30]Akbaripanah F, FereshtehSaniee F, Mahmudi R, et al. Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing[J]. Materials and Design, 2013, 43: 31-39.


[31]Jahadi R, Sedighi M, Jahed H. ECAP effect on the microstructure and mechanical properties of AM30 magnesium alloy[J]. Materials Science and Engineering A, 2014, 593: 178-184.


[32]Arab S M, Akbarzadeh A. The effect of equal channel angular pressing process on the microstructure of AZ31 Mg alloy strip shaped specimens[J]. Journal of Magnesium and Alloys, 2013, 1(2): 145-149.


[33]任国成, 赵国群. 变形温度对 AZ31 镁合金等通道转角挤压变形行为的影响[J]. 中国有色金属学报, 2013, (7): 1789-1795.


Ren G C, Zhao G Q. Effects of deformation temperature on deformation behavior of AZ31 magnesium alloy during equal channel angular pressing[J]. The Chinese Journal of Nonferrous Metals, 2013, (7): 1789-1795.


[34]SepahiBoroujeni S, FereshtehSaniee F. The influences of the expansion equal channel angular extrusion operation on the strength and ductility of AZ80 magnesium alloy[J]. Materials Science and Engineering A, 2015, 636:249-253.


[35]Hu H J, Zhang D F, Yang M B. Grain refinement in AZ31 magnesium alloy rod fabricated by extrusionshearing severe plastic deformation process[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2): 243-249.


[36]Hu H J. Physical and numerical simulation of deformation behaviors of extrusionshear for magnesium alloy[J]. Rare Metal Materlals and Engineering, 2013, 42(5): 957-961.


[37]Chen Q, Zhao Z, Shu D, et al. Microstructure and mechanical properties of AZ91D magnesium alloy prepared by compound extrusion[J]. Materials Science and Engineering A, 2011, 528(10-11): 3930-3934.


[38]Lu L W, Liu C M, Zhao J, et al. Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method[J]. Journal of Alloys and Compounds, 2015, 628: 130-134.


[39]卢立伟, 赵俊, 陈胜泉, . 镁合金正挤压-扭转变形的数值模拟与实验研究[J]. 中国有色金属学报, 2015, 25(9): 2350-2357.


Lu L W, Zhao J, Chen S Q, et al. Numerical simulation and experimental research of AZ31 Mg alloys processed by direct extrusion and torsional deformation[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9): 2350-2357.


[40]Li F, Zeng X, Bian N. Microstructure of AZ31 magnesium alloy produced by continuous variable crosssection direct extrusion (CVCDE)[J]. Materials Letters, 2014, 135(10): 79-82.


[41]Li F, Shi W, Bian N, et al. Effect of Accumulative strain on grain refinement and strengthening of ZM6 magnesium alloy during continuous variable crosssection direct extrusion[J]. Acta Metallurgica Sinica, 2015, 28(5): 649-655.


[42]Mahmoodkhani Y, Wells M A. Coextrusion process to produce AlMg eutectic clad magnesium products at elevated temperatures[J]. Journal of Materials Processing Technology, 2016, 232: 175-183.


[43]Feng B, Xin Y C, Yu H H, et al. Mechanical behavior of a Mg/Al composite rod containing a soft Mg sleeve and an ultra hard Al core[J]. Materials Science and Engineering A, 2016, 675:204-211.


[44]吴洋. 利用挤压制备镁/铝合金复合板材的组织与性能研究[D]. 重庆:重庆大学, 2016.


Wu Y. Microstructure and Mechanical Properties of Mg/Al Composite Laminates Fabricated by Extrusion[D]. ChongqingChongqing University, 2016.


[45]Priel E, Ungarish Z, Navi N U. Coextrusion of a Mg/Al composite billet: A computational study validated by experiments[J]. Journal of Materials Processing Technology, 2016, 236:103-113.


 



 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9