网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于GTN和韧性断裂准则的SS304微管液压胀形开裂研究
英文标题:Study on hydraulic bulging cracking for SS304 micro tubes based on GTN model and ductile fracture criteria
作者:王嵩杰 杨晨 
单位:南京理工大学 
关键词:SS304微管 液压成形 轴向补料 GTN损伤模型 韧性断裂准则 
分类号:TG306
出版年,卷(期):页码:2019,44(1):182-188
摘要:

为了提高SS304微管液压成形性能,设计了一种轴向补料液压成形工艺。通过试验并结合GTN损伤模型和韧性断裂准则研究了不同补料量对微管胀破压力和胀形直径的影响规律。试验结果表明,微管胀破压力和胀形直径表现出一定的分散性,并且在0.6~1.5 mm范围内进行轴向进给量补料时,轴向补料方法能够显著提高微管胀破压力和胀形高度。数值模拟结果表明:GTN损伤模型和Ayada准则能较好地模拟轴向补料与胀破压力之间的关系;在0.6~1.5 mm范围进行轴向补料,Brozzo韧性断裂准则预测管件胀形最大直径的效果要优于其他准则。

In order to improve the hydroforming performance of SS304 micro tubes, an axial feeding hydroforming process was designed, and the influences of different axial feeding amounts on the bursting pressure and bulging diameter of micro tubes were studied by the experiment combining with the GTN damage model and the ductile fracture criteria. The experiment results show that the bursting pressure and bulging diameter of micro tubes show a certain degree of dispersion characteristics, and the axial feeding method can significantly improve the burst pressure and bulging height of micro tubes when the axial feeding is performed in the range of 0.6-1.5 mm. The numerical simulation results show that the relationship between axial feeding and bursting pressure are simulated well by the GTN damage model and the Ayada criterion, and the effect of predicting the maximum bulging diameter of tubes by the Brozzo fracture ductile criterion is better than that of other criterias when the axial feeding is performed in the range of 0.6-1.5 mm.

基金项目:
中央高校基本科研业务费专项资金资助项目(30915118808);江苏省基础研究计划(自然科学基金)面上研究项目(BK2012805);高等学校博士学科点专项科研基金(20123219120006)
作者简介:
王嵩杰(1990-),男,硕士研究生,E-mail:2808170376@qq.com;通讯作者:杨晨(1976-),男,博士,副教授,E-mail:yangchen@njust.edu.cn
参考文献:

[1]Manabe K I, Sato H, Itai K, et al. Factors influencing the forming characteristics in micro tube hydroforming by ultra highforming pressure[J].Procedia Engineering, 2017, 207: 2334-2339.


[2]Christoph Hartl, Gerald Anyasodor, Joern Lungershausen. Formability of microtubes in hydroformingThe 14th international ESAFORM conference on material forming[J]. AIP Conf. Proc., 2011, 1353(1): 529-534.


[3]Gerald Anyasodor, Christoph Hartl. Investigations into fundamentals and forming system design for microtube expansion with pressurized media[J]. Key Engineering Materials, 2013, 597:153-158.


[4]Ng Kenny, Wagner Scott W, Camelio Jaime A, et al. Experimental determination and analysis of flow stress on micro tube hydroforming processes[J]. Transactions of the North American Manufacturing Research Institution of SME, 2010, 38: 577-584.


[5]Freudenthal A. The Inelastic Behavior of Solids[M]. New York: Wiley, 1950.


[6]Cockcroft M, Latham D. Ductility and the workability of metals[J]. Journal of the Institute of Metals,1968, 96 (1):33–39.


[7]Oh S, Chen C, Kobayashi S. Ductile fracture in axisymmetric extrusion and drawingPart 2: Workability in extrusion and drawing[J]. Journal of Engineering for Industry, 1979, 101: 36-44.


[8]Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits in metal sheets, sheet metal forming and formability[A]. Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group[C]. Amsterdam, 1972.


[9]Hashemi S J, Naeini H M, Liaghat G H, et al. Prediction of bulge height in warm hydroforming of aluminum tubes using ductile fracture criteria[J]. Archives of Civil & Mechanical Engineering, 2014, 15(1):19-29.


[10]Guo X, Ma F, Guo Q, et al. A calculating method of tube constants of ductile fracture criteria in tube free bulging process based on MK theory[J]. International Journal of Mechanical Sciences, 2017, 128-129: 140-146.


[11]Gurson A L. Continuum theory of ductile rupture by void nucleation and growthPart I: Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Material Technology, 1977, 99: 2-15.


[12]Needleman A, Tvergaard V. Aanalysis of ductile rupture in not ches bars[J]. Mechanics and Physics of Solids,1984, 32(4): 461-490.


[13]Tvergaard V, Needleman A. Analysis of the cupcone fracture in a round tensile test bar [J]. Acta Materialia, 1984, 32(1): 157-169.


[14]Fethi Abbassi, Touhami Belhadj, Sébastien Mistou, et al. Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming[J]. Materials and Design, 2013, 45: 605-615.


[15]Chu C C, Needleman A. Void nucleation effects in biaxially stretched sheets[J]. ASME, Journal of Engineering Material and Technology, 1980, 102: 249-256.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9