网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
固溶时间对7050航空铝合金锻件组织和性能的影响
英文标题:Influence of solid solution time on microstructure and properties of 7050 aerial aluminum alloy forgings
作者:肖红 邱泽林 
单位:(1.长江师范学院 机械与电气工程学院 重庆 408100 2. 重庆大学 材料科学与工程学院 重庆 400044) 
关键词:固溶时间 7050航空铝合金 第二相粒子 断口形貌 力学性能 
分类号:TG146.2
出版年,卷(期):页码:2019,44(2):150-155
摘要:

 

 
通过差热分析(DSC)、室温拉伸、断裂力学实验、扫描电子显微镜(SEM)和能谱分析等方法,研究了固溶时间对7050航空铝合金锻件力学性能、断口形貌和断裂韧性等的影响。结果表明:当固溶时间小于90 min时,随着固溶时间的增加,合金中第二相粒子逐渐溶入基体,残余粗大的第二相粒子主要是Al2CuMg和Al7Cu2Fe相;当固溶时间为90 min时,7050铝合金锻件的抗拉强度、屈服强度和断裂韧性分别达到最大值530 MPa、490 MPa和37.7 MPa·m1/2。7050铝合金的断裂方式主要是延性断裂中的滑移分离断裂;在固溶时间30~90 min区间,随着固溶时间的增加,韧窝的尺寸、数量和深度逐渐增大;继续增加固溶时间,韧窝的数量减少,深度也逐渐变浅。7050航空铝合金锻件的最佳固溶处理制度为475 ℃×90 min。
 

 

 
The influences of solid solution time on mechanical properties, fracture morphology and fracture toughness of 7050 aerial aluminum alloy forgings were studied by differential scanning calorimetry (DSC), tensile at room temperature, fracture mechanics experiment, scanning electron microscopy(SEM) and energy spectrum analysis. The results show that when the solid solution time is less than 90 min, with the increase of solid solution time, the second phase particles in the alloy dissolve into the matrix gradually, and the remaining coarse second phase particles are mainly Al2CuMg and Al7Cu2Fe phases. When the solid solution time is 90 min, the tensile strength,yield strength and fracture toughness of 7050 aluminum alloy forgings reach the maximum value of 530 MPa, 490 MPa and 37.7 MPa·m1/2,respectively, and the fracture mode of 7050 aluminum alloy is mainly the slipseparation fracture in ductile fracture. When the solid solution time is between 30-90 min, with the increase of solid solution time, the size,number and depth of the dimple increase. However, if the solid solution time increases continuously, the number and depth of dimples decrease gradually. Thus, the optimal solid solution treatment for 7050 aerial aluminum alloy forging is 475 ℃×90 min.
 
基金项目:
基金项目:国家自然科学基金面上项目(51575067)
作者简介:
作者简介:肖红(1989-),男,硕士,助教 Email:xh138967@163.com
参考文献:

 


 

 


[1]Burns J T, Gupta V K, Agnew S R, et al. Effect of low temperature on fatigue crack formation and microstructurescale propagation in legacy and modern AlZnMgCu alloys
[J]. International Journal of Fatigue, 2013, 55(7):268-275.

 


[2]Xu L, Dai G, Huang X, et al. Foundation and application of AlZnMgCu alloy flow stress constitutive equation in friction screw press die forging
[J]. Materials & Design, 2013, 47(9):465-472.

 


[3]Chen S, Chen K, Dong P, et al. Effect of recrystallization and heat treatment on strength and SCC of an AlZnMgCu alloy
[J]. Journal of Alloys & Compounds, 2013, 581(18):705-709.

 


[4]Ghiaasiaan R, Zeng X, Shankar S. Controlled diffusion solidification (CDS) of AlZnMgCu (7050): Microstructure, heat treatment and mechanical properties
[J]. Materials Science & Engineering A, 2014, 594(2):260-277.

 


[5]周思雨,王向杰,丁晚景,等.7050超高强铝合金的强韧化工艺研究
[J].铸造技术,2018,39(8): 1810-1813.

 

Zhou S Y, Wang X J, Ding W J, et al. Study on the strengthening and toughening process of 7050 ultrahigh strength aluminum alloy
[J]. Casting Technology, 2018, 39 (8): 1810-1813. 

 


[6]徐戊矫,唐农杰,江长友,等.双级固溶双级时效处理对7050铝合金组织与性能的影响
[J].热加工工艺,2018,47(8): 226-229.

 

Xu W J, Tang N J, Jiang C Y, et al. Effect of twostage solution and twostage aging treatment on the structure and properties of 7050 aluminum alloy
[J]. Hot Working Process, 2018, 47 (8): 226-229.

 


[7]祝贞凤,李辉,史春丽,等.双级时效对A1ZnMgCu合金组织和力学性能的影响
[J].金属热处理,2017,42(10):71-74.

 

Zhu Z F, Li H, Shi C L, et al. Effect of twostage aging on the microstructure and mechanical properties of A1ZnMgCu alloy
[J]. Heat Treatment of Metals, 2017, 42(10):71-74.

 


[8]毛建中,郭灵智,周慧,等.复合时效消除工件残余应力的工艺研究
[J].锻压技术,2018,43(10):151-156.

 

Mao J Z, Guo L Z, Zhou H, et al. Study on process of eliminating workpiece residual stress with composite aging
[J]. Forging & Stamping Technology, 2018,43(10): 151-156.

 


[9]GB/T 228.1—2010,金属材料拉伸试验:温试验方法
[S].

 

GB/T 228.1—2010, Tensile tests of metal materials: Temperature testing method
[S]. 

 


[10]GB/T 4161—2007,金属材料平面应变断裂韧度KIC试验方法
[S]. 

 

GB/T 4161—2007, KIC test method for plane strain fracture toughness of metal materials
[S]. 

 


[11]Starink M J. Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys
[J]. Metal Science Journal, 2001, 17(11):1324-1328.

 


[12]Wang T, Yin Z M, Sun Q. Effect of homogenization treatment on microstructure and hot workability of high strength 7B04 aluminium alloy
[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(2):335-339.

 


[13]张新明,何道广,刘胜胆,等.多级强化固溶处理对7050铝合金厚板强度和断裂韧性的影响
[J].中国有色金属学报,2012,22(6):1546-1554.

 

Zhang X M, He D G, Liu S D, et al. Effect of multistage solution treatment on strength and fracture toughness of 7050 aluminium alloy thick plate
[J]. Chinese Journal of Nonferrous Metals, 2012, 22(6): 1546-1554.

 


[14]王梁,陈国强,郑明玉,等. 某型号前轴疲劳试验及结果分析
[J]. 锻压技术,2017,42(5):119-122.

 

Wang L,Chen G Q,Zheng M Y,et al. Fatigue test and result analysis on a vehicle front axle
[J]. Forging & Stamping Technology, 2017, 42(5): 119-122.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9