网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
矩形截面件径向锻造工艺优化
英文标题:Optimization on radial forging process of rectangular cross-section billet
作者:徐方 董湘怀 王新宝 李正东 刘强 
单位:上海交通大学 兰州兰石能源装备工程研究院有限公司 
关键词:径向锻造 矩形截面件 锻透性 锻造功率 锻造载荷 
分类号:TG316.8
出版年,卷(期):页码:2019,44(4):1-9
摘要:

对于矩形截面件径向锻造问题,目前尚没有相应的锻造载荷、锻造功率和锻件质量相关的计算模型,以及工艺规划的标准。根据径向锻造变形特点,将平面变形条件下锻造载荷公式推广到矩形截面件锻造载荷计算,将预测圆截面件径向锻造锻透率的三角形法则推广到矩形截面件并进行了修正,提出一种锻造功率计算模型,计算误差都在10%左右。然后采用多目标加权的方法,将锻造效率、锻件质量和锻造载荷模型转化成单一的优化目标函数,对道次、压下率和送进率等工艺参数进行优化同时,采用4个工艺实例验证了工艺优化算法的优化和评估能力,并最终将工艺优化算法写入软件,应用到径向锻造自动化生产过程。

 

For the problem of radial forging of rectangular cross-section billet, there are no corresponding calculation models to evaluate forging load, forging power and quality of forgings at present, as well as the standards about forging process planning. According to the deforming characteristic of radial forging, the forging load formula in the plane deformation condition was applied to calculating the forging load of rectangular cross-section billet, and the triangle rule to assess the forging permeability of radial forging for circular cross-section billet was applied to the rectangular cross-section billet and was modified. Then, a calculating model of forging power was presented, and the calculating deviation is generally about 10%. Furthermore, the models of forging efficiency, quality of forgings and forging load were transformed into a single optimization objective function by multi-objective weighting method, and the process parameters such as pass, reduction rate and feeding rate were optimized. At the same time, four process instances were adopted to verify the optimization and evaluation ability of the process optimization algorithm, finally the process optimization algorithm was written into the software and applied to the automatic production process of radial forging.

基金项目:
国家自然科学基金资助项目(51775335)
作者简介:
徐方(1992-),男,硕士研究生 E-mail:xf119024130@sjtu.edu.cn 通讯作者:董湘怀(1955-),男,博士,教授 E-mail:dongxh@sjtu.edu.cn
参考文献:

[1] Lahoti G, Altan T. Analysis of the radial forging process for manufacturing rods and tubes[J]. Journal of Engineering for Industry, 1976, 98(1): 265-271.


[2]Afrasiab H, Movahhedy M R. Generalized slab method analysis of radial forging with a general curved shape die[A] . ASME. Proceedings of the 8th Biennial Conference on Engineering Systems Design and Analysis[C]. New York: American Society of Mechanical Engineers, 2006.


[3]Subramanian T L, Venkateshwar R, Lahoti G D, et al. Experimental and computer modeling of die cavity fill in radial forging of riflings[A]. Proceeding of Process Modeling Sessions,Process Modeling Fundamentals and Applications to Metals[C]. USA,1978.


[4]Ghaei A, Karimi Taheri A, Movahhedy M R. A new upper bound solution for analysis of the radial forging process[J]. International Journal of Mechanical Sciences, 2006, 48(11): 1264-1272.


[5]董节功, 周旭东, 朱锦洪,.径向锻造三维成形锻透性的数值模拟[J]. 机械工程材料, 2007, 31(3), 76-78.


Dong J GZhou X DZhu J Het al FEM simulation of forging penetration efficiency of radial forging in 3D[J] Materials for Mechanical Engineering200731 (3): 76-78.


[6]栾谦聪,董湘怀,吴云剑. 基于经验法则的锻透深度计算公式推导与验证[J]. 模具技术, 2013, (3):1-6.


Luan Q CDong X HWu Y J The derivation and validation of a formula calculating the forging penetration efficiency (FPE) based on empirical method[J]Die and Mold Technology2013(3):1-6.


[7]Wu Y J, Dong X H, Yu Q. An upper bound solution of axial metal flow in cold radial forging process of rods[J]. International Journal of Mechanical Sciences, 2014, 85: 120-129.


[8]Wu Y J, Dong X H. An upper bound model with continuous velocity field for strain inhomogeneity analysis in radial forging process[J]. International Journal of Mechanical Sciences, 2016, 115-116: 385-391.


[9]Wu Y J, Dong X H. Upper bound analysis of forging penetration in a radial forging process[J]. International Journal of Mechanical Sciences, 2015, 103: 1-8.


[10]Wu Y J, Dong X H, Yu Q. Upper bound analysis of axial metal flow inhomogeneity in radial forging process[J]. International Journal of Mechanical Sciences, 2015, 93: 102-110.


[11]杨箫, 董湘怀, 周亚宁,等. 矩形截面锻件的径向锻造力与展宽[J].锻压技术, 2017,42(5): 1-8.


Yang X, Dong X HZhou Y N, et al. Radial forging force and spread for rectangular cross-sectional forging[J]. Forging Stamping Technology2017,42(5): 1-8.


[12]董湘怀. 金属塑性成形原理[M]. 北京:机械工业出版社, 2011.


Dong X H. Principle of Metal Forming[M]. Beijing: China Machine Press, 2011.


[13]Liu X R, Zhou X D. The forging penetration efficiency of C45 steel stepped shaft radial forging with GFM forging machine[J]. Advanced Materials Research, 2011, 154-155: 593-596.


[14]吴云剑. 圆截面实心坯料冷径向锻造工艺的上限法解析[D]. 上海:上海交通大学,2017.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9