[1]顾波,王娇,白晶.基于热连轧机厚度精度的最优控制研究[J].机床与液压, 2018,46(8): 126-128.
Gu B, Wang J, Bai J. Optimal control of thickness accuracy of hot rolling mill [J]. Machine Tool & Hydraulic, 2018,46 (8): 126-128.
[2]樊浩森,胡建华,白雪,等. 汽车覆盖件拉深过程中的压边力预测[J]. 锻压技术,2017,42(7):43-47.
Fan H S,Hu J H,Bai X,et al. Prediction on blank holder force of automobile covering parts in deep drawing process[J]. Forging & Stamping Technology,2017,42(7):43-47.
[3]张生,姜万录,张佳慧.基于支持向量机预测的冷连轧机轧制力精确设定方法研究[J].液压与气动,2017,(7):50-55.
Zhang S, Jiang W L, Zhang J H. SVM prediction-based rolling force setting calculation method of tandem cold rolling mill [J]. Chinese Hydraulics & Pneumatics, 2017, (7): 50-55.
[4]何飞,石露露,黎敏,等.基于多模态和加权支持向量机的热轧轧制力智能预报[J].工程科学学报,2015,37(4):517-521.
He F, Shi L L, Li M, et al. Intelligent prediction of rolling force in hot rolling based on a multi-model and weighted support vector machine [J]. Chinese Journal of Engineering, 2015, 37 (4): 517-521.
[5]林伟路,丁小凤,双远华. BP神经网络对斜轧穿孔轧制力的预测[J].锻压技术,2018,43(10):175-178.
Lin W L,Ding X F,Shuang Y H. Prediction on rolling force of oblique rolling piercing based on BP neural network [J]. Forging & Stamping Technology,2018, 43(10):175-178.
[6]庄野,张辉,姜永芳. 基于神经网络的带钢热连轧机轧制力预报[J].控制工程,2013,20(S1):122-124.
Zhuang Y, Zhang H, Jiang Y F. Based on neural network strip steel strip machine rolling force prediction[J].Control Engineering of China, 2013,20(S1): 122-124.
[7]张俊明,刘军,俞晓峰,等.轧制力预测中RBF神经网络的组合应用[J].钢铁研究学报,2008, 20(2):33-36.
Zhang J M, Liu J, Yu X F, et al. Application of combination of RBF neural network to prediction of roiling force [J].Journal of Iron and Steel Research, 2008, 20 (2): 33-36.
[8]王桂霞. 热轧带钢平整机轧制力与板形控制的研究[D]. 邯郸:河北工程大学,2015.
Wang G X. Research on Rolling Force and Strip Shape Control of Hot Strip Mill[D]. Handan: Hebei University of Engineering, 2015.
[9]吴东升,王大志,杨青,等.基于ACPSO优化SVR的棒材连轧轧制力预测研究[J].仪器仪表学报,2012,33(11):2579-2585.
Wu D S, Wang D Z, Yang Q, et al. Study on bar rolling force prediction based on support vector regression optimized by accelerate convergence particle swarm optimization [J]. Chinese Journal of Scientific Instrument, 2012, 33 (11): 2579-2585.
[10]Vapnik V N. The Nature of Statistical Learning Theory [M].New York:Spring,1995.
[11]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 3(9): 293-300.
[12]郑志成,徐卫亚,徐飞,等.基于混合核函数PSO-LSSVM的边坡变形预测[J].岩土力学,2012,33(5):1421-1426.
Zheng Z C, Xu W Y, Xu F, et al. Forecasting of slope displacement based on PSO-LSSVM with mixed kernel [J]. Rock and Soil Mechanics, 2012, 33 (5): 1421-1426.
[13]Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[A]. Proceedings of the 2004 Congress on Evolutionary Computation[C]. Portland, USA: 2004.
[14]张拓,王建平.基于CQPSO-LSSVM的网络入侵检测模型[J].计算机工程与应用,2015,51(2):113-116.
Zhang T, Wang J P. Network intrusion detection based on cooperative quantum-behaved particle swarm algorithm and least square support vector machine [J]. Computer Engineering and Applications, 2015,51 (2): 113-116.
|