[1]Blaha F,Langenecker B. Elongation of zinc monocrystals under ultrasonic action[J]. Die Naturwissenschafen, 1955, 42(20): 556.
[2]Mousavi S A A A, Feizi H, Madoliat R. Investigations on the effects of ultrasonic vibrations in the extrusion process [J]. Journal of Materials Processing Technology, 2007, 187-188: 657-661.
[3]Daud Y, Lucas M, Huang Z H. Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminum[J]. Journal of Materials Processing Technology, 2007, 186(1-3): 179-190.
[4]Hung J C, Chiang M C. The influence of ultrasonic-vibration on double backward-extrusion of aluminum alloy[A]. Proceedings of the World Congress on Engineering[C]. London, UK, 2009.
[5]温彤,陈霞.超声振动对轻合金塑性压缩变形过程的影响[J].机械科学与技术,2013,32(2):221-224.
Wen T, Chen X.Effects of the ultrasonic vibration on the plastic deformation behavior in the compression process of light alloys[J]. Mechanical Science & Technology for Aerospace Engineering,2013,32(2):221-224.
[6]陈长新,韩光超,彭卓,等.超声辅助微挤压成形数值模拟研究[A].2016年全国超声加工技术研讨会论文集[C].大连, 2016.
Chen C X, Han G C, Peng Z, et a1. Numerical simulation research of ultrasonic assisted micro-extrusion forming process[A]. Proceedings of the National Ultrasonic Processing Technology Symposium[C]. Dalian, 2016.
[7]李辉,郑志镇,吴晓,等.Zr55Cu30Al10Ni5块体非晶合金在超声振动场下的流变成形能力[J].中国机械工程,2017, 28(20): 2514-2519.
Li H, Zheng Z Z, Wu X, et a1. Rheological forming ability of Zr55Cu30Al10Ni5 bulk metallic glasses under ultrasonic vibration fields[J].China Mechanical Engineering,2017,28(20): 2514-2519.
[8]Sanditov D S. Free volume of amorphous substances in the model of delocalized atoms[J]. Doklady Physical Chemistry, 2015, 464 (2): 255-257.
[9]Zhuang X C, Wang J P, Zheng H, et a1.Forming mechanism of ultrasonic vibration assisted compression[J].Transactions of Nonferrous Metals Society of China,2015, 25 (7):2352-2360.
[10]焦慧彬,陈康华,陈善达,等. Si对Al-Zn-Mg-Cu合金组织、断裂和局部腐蚀行为的影响[J]. 湖南大学学报: 自科版, 2018,45(6):11-21.
Jiao H B, Chen K H, Chen S D, et a1.Microstructure, fracture and localized corrosion behaviors of Al-Zn-Mg-Cu alloy with Si additions[J]. Journal of Hunan University: Natural Science, 2018, 45(6):11-21.
[11]Hiki Y, Tanahashi M, Takeuchi S. Temperature, frequency, and amplitude dependence of internal friction of metallic glass[J]. Journal of Non-crystalline Solids, 2008, 354 (10-11): 994-1000.
[12]Sung D S, Kwon O J, Fleury E, et a1.Enhancement of the glass forming ability of Cu-Zr-A1 alloys by Ag addition[J].Metals and Materials International,2004,10(6):575-579.
[13]Li N, Xu X N, Zheng Z Z, et a1.Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading[J]. Acta Materialia,2014, 65:400-411.
[14]Ketov S V, Nguyen H K, Trifonov A S, et a1.Huge reduction of Young′s modulus near a shear band in metallic glass[J].Journal of Alloys & Compounds,2016, 687:221-226.
[15]Abramov O V. High-intensity Ultrasonics: Theory and Industrial Application [M]. Moscow: Kurnakov Institute of General and Inorganic Chemistry, 1998.
[16]Alok Nayer. The Metals Databook[M]. New York: Mc Graw-Hill, 1997.
[17]Humphrey V F. Ultrasound and matter-physical interaction[J]. Progress in Biophysics and Molecular Biology, 2007, 93(1-3): 195-211.
[18]Zong H T, Bian L Y, Cheng J Y, et al. Glass forming ability, thermal stability and elastic properties of Zr-Ti-Cu-Be-(Fe) bulk metallic glasses[J]. Results in Physics, 2016,6: 1157-1160.
[19]陈振华,张黎科,陈鼎,等. Cu-Zr-Ag-Al非晶的晶化动力学研究[J]. 湖南大学学报: 自科科学版, 2013, 40 (1):78-81.
Chen Z H, Zhang L K, Chen D, et al. Kinetics of crystallization in Cu-Zr-Ag-Al amorphous alloy [J]. Journal of Hunan University: Natural Science, 2013, 40 (1):78-81.
|