网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超声波能流密度对Zr基非晶合金常温塑性性能的影响
英文标题:Influence of ultrasonic energy flow density on the plastic properties of zirconium-based amorphous alloy at room temperature
作者:刘芳平 刘晓 娄燕 
单位:深圳大学 
关键词:超声波辅助振动 非晶合金 超声波能流密度 塑性性能 有限元模拟 
分类号:TG139.8
出版年,卷(期):页码:2019,44(4):162-170
摘要:

采用频率为20 kHz及振幅分别为019273643 μm的超声辅助振动,对Zr基非晶合金进行微压缩预处理,然后进行准静态压缩断裂试验,对断口进行扫描电镜(SEM)观察,使用ABAQUS模拟该过程,并基于超声波能流密度I表征对Zr基非晶合金常温塑性性能的影响。结果表明:Zr基非晶合金变形区域发生剪切变形,以韧性断裂起主要作用;随着振幅或频率增大,弹性模量降低,等效应力分布更加均匀,应变增大,塑性变形越好,成形能力提高;当能流密度I超过9.41×108 W·m-2 左右时,非晶合金的可成形性随着超声波能流密度I的增大而降低。

 

Micro-compression pre-treatment of Zr-based amorphous alloy was conducted by ultrasonic-assisted vibration with the frequency of 20 kHz and the amplitudes of 0, 19, 27, 36 and 43 μm, respectively. Then, the quasi-static compression fracture test was carried out, and the fractures were observed by high-resolution scanning electron microscopy. Next, the process was simulated by ABAQUS, and the influence of ultrasonic energy flow density on the plastic properties of Zr-based amorphous alloy at room temperature was studied. The results show that the shear deformation occurs in the deformed zone of Zr-based amorphous alloy, and the ductile fracture plays a major role. With the increasing of ultrasonic amplitude and frequency, the elastic modulus decreases, the equivalent stress distribution is more uniform, the strain increases, the plastic deformation is better and the formability increases. However, it is found that the formability of amorphous alloy decreases with the increasing of ultrasonic energy flow density when the energy flow density is above 9.41×108 W·m-2 approximately.

 

基金项目:
国家自然科学基金资助项目(51675347);广东省自然科学基金资助项目(2016A030313058);深圳市科技项目(JCYJ20160308091758179)
作者简介:
刘芳平(1996-),男,硕士研究生 E-mail:2170295804@email.szu.edu.cn 通讯作者:娄燕(1971-),女,博士,教授 E-mail:susanlou121@163.com
参考文献:

[1]Blaha FLangenecker B. Elongation of zinc monocrystals under ultrasonic action[J]. Die Naturwissenschafen, 1955, 42(20): 556.


[2]Mousavi S A A A, Feizi H, Madoliat R. Investigations on the effects of ultrasonic vibrations in the extrusion process [J]. Journal of Materials Processing Technology, 2007, 187-188: 657-661.


[3]Daud Y, Lucas M, Huang Z H. Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminum[J]. Journal of Materials Processing Technology, 2007, 186(1-3): 179-190.


[4]Hung J C, Chiang M C. The influence of ultrasonic-vibration on double backward-extrusion of aluminum alloy[A]. Proceedings of the World Congress on Engineering[C]. London, UK, 2009.


[5]温彤,陈霞.超声振动对轻合金塑性压缩变形过程的影响[J].机械科学与技术,2013,32(2):221-224.


Wen T, Chen XEffects of the ultrasonic vibration on the plastic deformation behavior in the compression process of light alloys[J]. Mechanical Science & Technology for Aerospace Engineering2013,32(2):221-224.


[6]陈长新,韩光超,彭卓,等.超声辅助微挤压成形数值模拟研究[A]2016年全国超声加工技术研讨会论文集[C].大连, 2016.


Chen C X, Han G C, Peng Z, et a1. Numerical simulation research of ultrasonic assisted micro-extrusion forming process[A]. Proceedings of the National Ultrasonic Processing Technology Symposium[C]. Dalian, 2016.


[7]李辉,郑志镇,吴晓,等.Zr55Cu30Al10Ni5块体非晶合金在超声振动场下的流变成形能力[J].中国机械工程,2017, 28(20): 2514-2519.


Li H, Zheng Z Z, Wu X, et a1. Rheological forming ability of Zr55Cu30Al10Ni5 bulk metallic glasses under ultrasonic vibration fields[J].China Mechanical Engineering2017,28(20): 2514-2519.


[8]Sanditov D S. Free volume of amorphous substances in the model of delocalized atoms[J]. Doklady Physical Chemistry, 2015, 464 (2): 255-257.


[9]Zhuang X C, Wang J P, Zheng H, et a1Forming mechanism of ultrasonic vibration assisted compression[J].Transactions of Nonferrous Metals Society of China2015, 25 (7):2352-2360.


[10]焦慧彬,陈康华,陈善达,等. SiAl-Zn-Mg-Cu合金组织、断裂和局部腐蚀行为的影响[J]. 湖南大学学报: 自科版, 2018,45(6):11-21.


Jiao H B, Chen K H, Chen S D, et a1Microstructure, fracture and localized corrosion behaviors of Al-Zn-Mg-Cu alloy with Si additions[J]. Journal of Hunan University: Natural Science, 2018, 45(6):11-21.


[11]Hiki Y, Tanahashi M, Takeuchi S. Temperature, frequency, and amplitude dependence of internal friction of metallic glass[J]. Journal of Non-crystalline Solids, 2008, 354 (10-11): 994-1000.


[12]Sung D S, Kwon O J, Fleury E, et a1Enhancement of the glass forming ability of Cu-Zr-A1 alloys by Ag addition[J]Metals and Materials International200410(6)575-579


[13]Li N, Xu X N, Zheng Z Z, et a1Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading[J]. Acta Materialia2014, 65:400-411.


[14]Ketov S V, Nguyen H K, Trifonov A S, et a1Huge reduction of Youngs modulus near a shear band in metallic glass[J].Journal of Alloys & Compounds2016, 687:221-226.


[15]Abramov O V. High-intensity Ultrasonics: Theory and Industrial Application [M]. Moscow: Kurnakov Institute of General and Inorganic Chemistry, 1998.


[16]Alok Nayer. The Metals Databook[M]. New York: Mc Graw-Hill, 1997.


[17]Humphrey V F. Ultrasound and matter-physical interaction[J]. Progress in Biophysics and Molecular Biology, 2007, 93(1-3): 195-211.


[18]Zong H T, Bian L Y, Cheng J Y, et al. Glass forming ability, thermal stability and elastic properties of Zr-Ti-Cu-Be-(Fe) bulk metallic glasses[J]. Results in Physics, 20166: 1157-1160.


[19]陈振华,张黎科,陈鼎,等. Cu-Zr-Ag-Al非晶的晶化动力学研究[J]. 湖南大学学报: 自科科学版, 2013, 40 (1):78-81.


Chen Z H, Zhang L K, Chen D, et al. Kinetics of crystallization in Cu-Zr-Ag-Al amorphous alloy [J]. Journal of Hunan University: Natural Science, 2013, 40 (1):78-81.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9