网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
金属薄板单轴弹塑性屈曲变形与回弹的几何参数研究
英文标题:Study on geometric parameters of uniaxial elastoplastic buckling
作者:刘俊 丁子祈 韩先洪 
单位:上海交通大学 
关键词:屈曲变形 几何关系 回弹解析 304不锈钢 弹塑性 
分类号:TG30
出版年,卷(期):页码:2019,44(6):24-29
摘要:

针对金属薄板受压时产生的弹塑性屈曲现象,开展理论与实验研究。将薄板屈曲分成加载和卸载两个阶段进行分析,对加载阶段引入余弦函数轮廓假设,对卸载阶段引入平面应变假设,以此建立薄板屈曲的几何特征参数模型。以304不锈钢为例,结合一套多向拉压装置,开展了不同长度的金属薄板屈曲变形与回弹实验。根据本文模型计算试样回弹后的参数,并与实验数据进行对比,其中高度误差小于5.4%,长度误差小于2.5%。进一步对参数分析表明:回弹后的长度与高度均随试样原始长度的增加而增加,且前者接近线性关系;随着板厚增加,回弹后试样高度增加而长度减小。
 


For the elastoplastic buckling phenomenon of sheet metal under compressive load, both theoretical and experimental studies were conducted. Then, the buckling of sheet metal was divided into loading and unloading stages for analysis, and the geometric characteristic parameter model of sheet metal buckling was established by introducing cosine contour assumption into the loading stage and introducing plane strain assumption into the unloading stage. For 304 stainless steel, experiments on buckling deformation and springback of sheet metal with different lengths were conducted by a set of multi-direction tension and compression device, and the parameters of the specimen after springback were calculated and compared with the experimental data. The results show that the height error is less than 5.4% and the length error is less than 2.5%. Further analysis of the parameters shows that the length and height of the specimen after springback increase with the increasing of the original length of the specimen, and the former is close to the linear relationship. With the increasing of sheet thicknesses, the height of the specimen increases, and the length of the specimen decreases after springback.
 

基金项目:
国家自然科学基金资助项目(51775336)
作者简介:
刘俊(1994-),男,硕士研究生 E-mail:yaoyechengming@sjtu.edu.cn 通信作者:韩先洪(1977-),男,博士,副研究员 E-mail:hanxh@sjtu.edu.cn
参考文献:


[1]陈庆远. 复合材料薄壁结构的屈曲和后屈曲分析
[D]. 上海:上海交通大学, 2015.


Chen Q Y. Buckling and Post-buckling Analysis of Thin-walled Composite Structures
[D]. Shanghai:Shanghai Jiao Tong University, 2015.



[2]Baznat Z P, Cedolin L. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
[M]. Oxford:Oxford University Press, 1991.



[3]Groh R M J, Avitabile D, Pirrera A. Generalised path-following for well-behaved nonlinear structures
[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 394-426.



[4]薄涛. 介电弹性体柔性电子系统薄膜/基底结构的屈曲行为研究
[D]. 哈尔滨:哈尔滨工业大学, 2016.


Bo T. Research on the Buckling Behavior of Film/Substrate Structures in Dielectric Elastomer Based Flexible Electronic Systems
[D]. Harbin: Harbin Institute of Technology, 2016.



[5]Meressi T, Paden B. Buckling control of a flexible beam using piezoelectric actuators
[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 977-980



[6]Groh R M J, Pirrera A. Orthotropy as a driver for complex stability phenomena in cylindrical shell structures
[J]. Composite Structures, 2018, 198: 63-72.



[7]Zhang Y, Yan Z, Nan K, et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes
[J]. Proceeding of the National Acadamy of Sciences, 2015, 112(38): 11757-11764.



[8]Fu H, Nan K, Bai W,et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics
[J]. Nature Materials,2018, 17(3): 268-276.



[9]Wagoner R H, Lim H, Lee M G. Advanced issues in springback
[J]. International Journal of Plasticity, 2013, 45: 3-20.



[10]Zhang Z T, Hu S J. Mathematical modeling in plane strain bending
[J]. SAE Technical Papers, 1997, 106: 458-471.



[11]Yan Z, Zhang F, Wang J,et al. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials
[J]. Advanced functional materials, 2016, 26(16): 2629-2639.



[12]Verma R K, Haldar A. Effect of normal anisotropy on springback
[J]. Journal of Materials Processing Technology, 2007, 190(1-3): 300-304.



[13]Hou Y, Min J, Lin J, et al. Springback prediction of sheet metals using improved material models
[J]. Procedia Engineering, 2017, 207:173-178



[14]Mohr D, Dunand M, Kim K H. Evaluation of associated and non-associated quadratic plasticity models for advanced high strength steel sheets under multi-axial loading
[J]. International Journal of Plasticity, 2010, 26(7): 939-956.



[15]Makkouk R, Bourgeois N, Serri J, et al. Experimental and theoretical analysis of the limits to ductility of type 304 stainless steel sheet
[J]. European Journal of Mechanics-A/Solids, 2008, 27(2): 181-194.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9