网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于两段排样方式的剪冲下料优化算法
英文标题:An optimization algorithm for shearing and punching problem based on
作者:向文欣 荀珂 冉翠翠 
单位:四川信息职业技术学院 河南农业职业学院 
关键词:下料问题 剪切 冲压 两段排样方式 动态规划 
分类号:TP391
出版年,卷(期):页码:2019,44(6):35-40
摘要:

针对金属板材剪冲下料问题,提出一种基于两段排样方式的优化算法。下料过程分两个阶段:第1阶段将板材剪切成条料,第2阶段将条料冲压出零件。两段排样方式把板材划分为两个段,每个段包含一组相同长度和方向的条料,每根条料仅包含同种零件。首先构造排样算法生成单张板材上零件的两段排样方式,采用动态规划技术确定条料在段中的优化布局,采用启发式方法确定板材的最优两段划分。然后构造下料算法,通过调用上述排样算法生成一系列排样方式,按照板材使用张数最小原则确定每个排样方式的使用次数,得到下料方案。对比文献中基准例题的计算结果表明,本文算法的板材下料利用率高于其他3种文献算法,并且计算时间合理。

For the problem of shearing and punching for sheet metal, an optimization algorithm based on two-segment layout was proposed, and the cutting process was divided into two stages. In the first stage, the sheet was sheared into strips, and in the second stage, the parts were punched in the strips. With the two-segment layout, the sheet was divided into two segments, each segment contained a set of strips with the same length and direction, and each strip contained only the same parts. Firstly, the layout algorithm was constructed to generate the two-segment layout of parts on a sheet, the optimal layout of the strips on the segment was determined by dynamic programming technique, and the optimal two-segment division of sheet was determined by the heuristic method. Then, the cutting algorithm was constructed, and a series of layouts were generated by calling the above layout algorithm. According to the principle of the minimum number of sheets used, the number of times used for each layout were determined, and the cutting plan was obtained. The calculation results of benchmark instances in the literature show that the utilization rate of metal sheet cutting of the algorithm in this paper is higher than that of three literature algorithms, and the calculation time is reasonable.

基金项目:
河南省职业教育教学改革项目(ZJC15056)
作者简介:
向文欣(1986-),女,硕士,讲师 E-mail:wxsc205@163.com
参考文献:


[1]Cui Y. Recursive algorithm for generating two-staged cutting patterns of punched strips
[J]. Mathematical and Computational Applications, 2007, 12(2): 107-115.



[2]姜永亮. 基于最优同质块的分段式矩形优化排样
[J]. 锻压技术, 2017, 42(7):182-186.


Jiang Y L. Rectangular optimal layout based on segments filled with optimal homogeneous blocks
[J]. Forging & Stamping Technology, 2017, 42(7):182-186.



[3]Cui Y. Generating optimal T-shape cutting patterns for rectangular blanks
[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218(8): 857-866.



[4]季君. 基于同形块的剪切下料布局算法研究
[D]. 北京:北京交通大学, 2012.


Ji J. Research on Guillotine Cutting Stock Packing Algorithm Based on Same-shape Block
[D]. Beijing:Beijing Jiaotong University, 2012.



[5]梁秋月, 崔耀东, 游凌伟. 应用三块排样方式求解二维下料问题
[J]. 广西师范大学学报:自然科学版, 2014,32(3):41-45.


Liang Q Y,Cui Y D, You L W. Solving two-dimensional cutting stock problem with three-block patterns
[J]. Journal of Guangxi Normal University:Natural Science Edition, 2014, 32(3):41-45.



[6]Chen Q, Cui Y, Chen Y. Sequential value correction heuristic for the two-dimensional cutting stock problem with three-staged homogenous patterns
[J]. Optimization Methods & Software, 2016, 31(1):68-87.



[7]车念, 张军, 潘立武. 冲裁条带剪切下料问题的一种求解算法
[J].机械设计与制造, 2016, (2):37-40.


Che N, Zhang J, Pan L W. An algorithm for solving the cutting stock problem of punched strips
[J]. Machinery Design & Manufacture,2016,(2):37-40.



[8]曾兆敏, 管卫利, 潘卫平. 冲裁件条料最优四块剪切下料方案的生成算法
[J]. 计算机工程与应用, 2016, 52(20):75-79.


Zeng Z M, Guan W L, Pan W P. Algorithm for generating optimal four-block cutting stock patterns of punched strips
[J]. Computer Engineering and Applications, 2016, 52(20): 75-79.



[9]Cui Y P, Cui Y, Tang T. Sequential heuristic for the two-dimensional bin-packing problem
[J]. European Journal of Operational Research, 2015, 240(1): 43-53.



[10]Cui Y P, Tang T B. Parallelized sequential value correction procedure for the one-dimensional cutting stock problem with multiple stock lengths
[J]. Engineering Optimization, 2014, 46(10):1352-1368.



[11]Chen Y, Song X, Ouelhadj D, et al. A heuristic for the skiving and cutting stock problem in paper and plastic film industries
[J]. International Transactions in Operational Research,2017, 24(1):1-23.



[12]Kellerer H, Pferschy U, Pisinger D. Knapsack Problems
[M]. Berlin: Springer Berlin Heidelberg, 2004.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9