网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
皮尔格冷轧304不锈钢管组织及性能研究
英文标题:Research on microstructure and properties for Pilger cold rolled 304 stainless steel tube
作者:李伟 楚志兵 帅美荣 王环珠 薛占元 李玉贵 薛春 苏辉 
单位:太原科技大学 
关键词:皮尔格冷轧 304不锈钢管 组织演变 力学性能 金属流动 
分类号:TG335.71
出版年,卷(期):页码:2019,44(6):53-58
摘要:

通过皮尔格轧制实验和数值仿真技术相结合的方法对304不锈钢管成形过程进行研究,借助金相显微镜与拉伸实验,重点分析304不锈钢管成形过程中组织演变及力学性能的变化规律。结果表明:成形时管材上任意点处的金属流动方向处于不断变化的过程,晶粒内部流线呈无规则分布;内壁所受的等效应力要大于外壁所受的等效应力,内壁组织剪切滑移带更为明显,变形程度更加剧烈,轧制过程中发生碎化,钢管平均晶粒尺寸减小;钢管在轧制过程中维式硬度值不断增大,由轧前的236 HV增加到403 HV,且屈服强度和抗拉强度也随着轧制的进行而增大,分别由轧前的352和794 MPa提高至轧后的745和1209 MPa。

The forming process of 304 stainless steel tube was studied by the method combining Pilger rolling experiment and numerical simulation technology, and the changes law of microstructure and mechanical properties of 304 stainless steel tube during forming process were analyzed by metallographic microscope and tensile test. The results show that the metal flow direction at any point on the tube in the forming process is in a changing process, and the internal flow lines of grains are randomly distributed. Then, the equivalent stress on the inner wall is greater than that on the outer wall, the shear band of the inner wall is more obvious, and the deformation is more severe. Furthermore, the crushing occurs during the rolling process, and the average grain size of steel tube decreases. The hardness of steel tube increases from 236 HV before rolling to 403 HV after rolling continuously, and the yield strength and tensile strength also increase with the progress of rolling from 352 and 794 MPa before rolling to 745 and 1209 MPa after rolling, respectively.

基金项目:
国家重点研发计划项目(2018YFB1307902);国家自然科学基金资助项目(U1710113);中国博士后科学基金项目(2017M622903);山西省重点研发计划重点项目(201703D111003,201703D111002);山西省重点研发计划一般项目(201703 D121008);山西省研究生联合培养基地人才培养项目(2018JD33)
作者简介:
李伟(1994-),男,硕士研究生 E-mail:854523935@qq.com 通讯作者:楚志兵(1981-),男,博士,教授 E-mail:chuzhibing@tyust.edu.cn
参考文献:


[1]鲍波.铜合金管及不锈钢管
[M]. 北京:冶金工业出版社, 2007.


Bao B. Copper Alloy Tube and Stainless Steel Tube
[M]. Beijing: Metallurgical Industry Press, 2007



[2]Stinnertz H. Cold reducing of non-ferrous metal tubes by the cold-pilgering process
[J].Tube Pipe Technology, 1988, 87(2):27-31.



[3]Lodej B, Niang K, Montmitonnet P, et al. Accelerated 3D FEM computation of the mechanical history of the metal deformation in cold pilgering of tubes
[J]. Journal of Materials Processing Technology, 2006, 177(1-3):188-191.



[4]Osika J, Libura W. Mathematical model of tube cold rolling in pilger mill
[J]. Journal of Materials Processing Technology, 1992, 34(1-4):325-332.



[5]Ukai S, Mizuta S, Yoshitake T, et al. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels
[J]. Journal of Nuclear Materials, 2000, 283(1):702-706.



[6]Abe H, Furugen M. Method of evaluating workability in cold pilgering
[J]. Journal of Materials Processing Technology, 2012, 212(8):1687-1693.



[7]Mulot S, Hacquin A, Montmitonnet P, et al. A fully 3D finite element simulation of cold piligering
[J]. Journal of Materials Processing Technology, 1996, 60(1-4):505-512.



[8]Randall S, Prieur H.Tubular production in the cold pilgermachine
[J].Iron Steel Engineering,1967,67(2):109-117.



[9]Hideaki Abe, Tetsuya Iwamoto, Yoshiaki Yamamoto, et al. Dimensional accuracy of tubes in cold pilgering
[J]. Journal of Materials Processing Technology. 2016, 231:277-287.



[10]李鹏燕,熊毅,陈路飞, 等.深冷轧制对AISI 310S不锈钢组织和性能的影响
[J]. 材料热处理学报, 2015,36(3):112-117.


Li P Y, Xiong Y, Chen L F, et al. Effect of cryorolling on microstructure and mechanical properties of AISI 310S stainless steel
[J]. Transactions of Materials and Heat Treatment, 2015,36(3):112-117.



[11]董红亮.变形量对304奥氏体不锈钢组织和性能的影响
[D]. 南京:南京理工大学, 2010.


Dong H L.The Effect of Deformation on Micrestructure and Properties of 304 Austenitic Stainless Steel
[D]. Nanjing:Nangjing University of Science and Technology, 2010.



[12]周翠兰,刘红梅,白晋钢.冷轧变形量对304不锈钢力学性能的影响
[J].钢铁,2012,47(10),70-75.


Zhou C L, Liu H M, Bai J G. Influence of cold rolling deformation on mechanical properties of 304 stainless steel
[J].Iron & Steel,2012,47(10),70-75.



[13]GB/T 228—2002, 金属材料 室温拉伸试验方法
[S].


GB/T 228—2002, Metallic materials—Tensile testing at ambient temperature
[S].



[14]王俊北. 冷轧变形对316LN奥氏体不锈钢组织和性能的影响
[D].洛阳:河南科技大学,2017.


Wang J B. Effect of Cold Rolling Deformation on the Structure and Properties of 316LN Austenitic Stainless Steel
[D]. Luoyang:Henan University of Science and Technology, 2017.



[15]Montmitonnet P, Logé R, Hamery M, et al. 3D elastic-plastic finite element simulation of cold pilgering of zircaloy tubes
[J]. Journal of Materials Processing Technology, 2002,125(9):814-820.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9