[1]Yang C, Shan X, Xie T. Titanium wire drawing with longitudinal-torsional composite ultrasonic vibration [J]. International Journal of Advanced Manufacturing Technology,2016, 83(1-4): 645-655.
[2]Daud Y, Lucas M, Huang Z. Superimposed ultrasonic oscillations in compression tests of aluminium [J]. Ultrasonics,2006, 44(8): e511-e515.
[3]翟维东, 陈晓晓, 李燕乐, 等. 超声振动对渐进成形过程成形力的影响 [J]. 锻压技术, 2018,43(8):80-84.
Zhai W D, Chen X X, Li Y L, et al. Influence of ultrasonic vibration on forming forces in incremental forming [J]. Forming & Stamping Technology, 2018,43(8):80-84.
[4]Vahdati M, Mahdavinejad R, Amini S. Investigation of the ultrasonic vibration effect in incremental sheet metal forming process [J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2015, 231(6):1-12.
[5]Li P, He J, Liu Q, et al. Evaluation of forming forces in ultrasonic incremental sheet metal forming [J]. Aerospace Science and Technology,2017, 63: 132-139.
[6]仲崇凯,管延锦,姜良斌,等. 金属超声振动塑性成形技术研究现状及其发展趋势 [J]. 精密成形工程, 2015,7(1): 9-15.
Zhong C K, Guan Y J, Jiang L B, et al.Research status and development trend of ultrasonic-vibration assited metal plastic forming [J]. Journal of Netshape Forming Engineering, 2015,7(1): 9-15.
[7]Siddiq A, Ghassemieh E. Theoretical and FE analysis of ultrasonic welding of aluminum alloy 3003 [J]. Journal of Manufacturing Science and Engineering,2009, 131(4): 481-498.
[8]Siegert K, Ulmer J. Influencing the friction in metal forming processes by superimposing ultrasonic waves [J]. CIRP Annals-Manufacturing Technology, 2001,50(1):195-200.
[9]Langenecker B. Effects of ultrasound on deformation characteristics of metals [J]. IEEE Transactions on Sonics & Ultrasonics,1966, 13(1): 1-8.
[10]Siddiq A, El S T. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations [J]. Ultrasonics,2012, 52(4): 521-529.
[11]Yao Z, Kim G Y, Wang Z, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments [J]. International Journal of Plasticity,2012, 39: 75-87.
[12]Deshpande A, Hsu K. Acoustic energy enabled dynamic recovery in aluminium and its effects on stress evolution and post-deformation microstructure [J]. Materials Science and Engineering: A,2018, 711: 62-68.
[13]Frost H J, Ashby M F. Deformation-mechanism Maps: The Plasticity and Creep of Metals and Ceramics [M]. Oxford:Pergamon Press, 1982.
[14]Kocks U F. Constitutive Behavior Based on Crystal Plasticity [M]. New York:Elsevier Applied Science, 1987.
[15]Kocks U F. Laws for work-hardening and low-temperature creep [J]. Journal of Engineering Materials and Technology, 1976, 98(1):76-85.
[16]Zhou H Y, Cui H Z, Qin Q H. Influence of ultrasonic vibration on the plasticity of metals during compression process [J]. Journal of Materials Processing Technology, 2018, 251: 146-159.
[17]Huang H, Pequegnat A, Chang B H, et al. Influence of superimposed ultrasound on deformability of Cu [J]. Journal of Applied Physics,2009, 106(11): 1144-1198.
[18]Long Y, Li Y, Sun J, et al. Effects of process parameters on force reduction and temperature variation during ultrasonic assisted incremental sheet forming process [J]. International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):1-12.
[19]Malygin G A. Acoustic plastic effect and the stress superimposition mechanism [J]. Physics of the Solid State, 2000, 42(1): 72-78.
[20]王家鹏,赵震,庄新村,等. 超声振动辅助成形本构模型 [J]. 塑性工程学报. 2015, 22(6): 1-6.
Wang J P, Zhao Z, Zhuang X C, et al. Study on constitutive model of ultrasonic vibration assisted forming [J]. Journal of Plasticity Engineering, 2015, 22(6): 1-6.
|