[1]杨少华, 张丹城, 田亚斌, 等. 5083铝镁合金在不同浓度NaCl溶液中的腐蚀研究 [J]. 有色金属科学与工程, 2018, 9(2): 1-5.
Yang S H, Zhang D C, Tian Y B, et al. Corrosion of 5083 aluminum magnesium alloy in NaCl solution with different concentrations [J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 1-5.
[2]陈雨, 杨文静, 高兵, 等. 搅拌摩擦加工5083-O铝合金的组织和性能 [J]. 稀有金属, 2017, 41(9): 955-963.
Chen Y, Yang W J, Gao B, et al. Friction stir processing in 5083-O aluminum alloy: Microstructures and mechanical properties [J]. Chinese Journal of Rare Metals, 2017, 41(9): 955-963.
[3]Mirjavadi S S, Alipour M, Emamian S, et al. Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance [J]. Journal of Alloys and Compounds, 2017, 712: 795-803.
[4]杨如民. 基于人工神经网络的铝合金宽幅板带材质量控制模型的研究 [D]. 重庆:重庆大学, 2015.
Yang R M. The Research of the Quality Control Model for Wild Aluminum Plate and Strip Based on Artificial Neural Network [D].Chongqing:Chongqing University, 2015.
[5]陈宝东, 郭锋, 温静, 等. Mg-Zn-Zr-Y合金高温塑性变形本构模型及流变行为预测 [J]. 稀有金属材料与工程, 2017, 46(11): 3305-3310.
Chen B D, Guo F, Wen J, et al. Constitutive model of hot plastic deformation and flow behavior prediction of Mg-Zn-Zr-Y alloy [J]. Rare Metal Materials and Engineering, 2017, 46(11): 3305-3310.
[6]潘玲, 张强. 基于BP神经网络的汽车轻合金零部件热处理工艺优化 [J]. 热加工工艺, 2017, 46(18): 221-223,227.
Pan L, Zhang Q. Optimization of heat treatment process for automotive light alloy parts based on BP neural network [J]. Hot Working Technology, 2017, 46(18): 221-223,227.
[7]李先梦, 湛利华, 申儒林, 等. 2A12硬铝合金热拉伸流变行为及本构建模 [J]. 锻压技术, 2017, 42(4): 159-164,193.
Li X M, Zhan L H, Shen R L, et al. Hot tensile flow behavior and constitutive model of aluminum alloy 2A12 [J]. Forging & Stamping Technology, 2017, 42(4): 159-164,193.
[8]初冠南, 林艳丽, 宋伟宁, 等. 基于二次多项式新本构模型的铝合金搅拌摩擦焊板材成形极限研究 [J].金属学报, 2017, 53(1): 114-122.
Chu G N, Lin Y L, Song W N, et al. Forming limit of FSW aluminum alloy blank based on a new constitutive model [J]. Acta Metallurgica Sinica, 2017, 53(1): 114-122.
[9]马立勇, 颜景润, 张永清, 等. 基于灰色系统理论的7075铝合金板材疲劳寿命研究 [J]. 锻压技术, 2017, 42(7): 173-176.
Ma L Y, Yan J R, Zhang Y Q, et al. Study on fatigue life of aluminum alloy 7075 sheet based on grey system theory [J]. Forging & Stamping Technology, 2017, 42(7): 173-176.
[10]罗豪鑫, 陈传勇, 刘建中, 等. 基于遗传规划算法的不同应力比下不同厚度7050铝合金疲劳裂纹扩展寿命预测 [J]. 材料科学与工程学报, 2017, 35(1): 26-31.
Luo H X, Chen C Y, Liu J Z, et al. Prediction of fatigue crack growth life of 7050 aluminum alloy with different thicknesses under various load ratios by genetic programming [J]. Journal of Materials Science and Engineering, 2017, 35(1): 26-31.
[11]李尚平, 陈曾雄, 周敬辉, 等. BP神经网络对甘蔗宿根切割质量的预测——基于PSO算法 [J]. 农机化研究, 2018, 40(10): 11-17.
Li S P, Chen Z X, Zhou J H, et al. Prediction model of cutting quality of the sugarcane ratoon by BP neural network-Based on PSO algorithem [J]. Journal of Agricultural Mechanization Research, 2018, 40(10): 11-17.
[12]潘强, 张继春, 肖清华, 等. 动能弹对混凝土靶侵彻深度的PSO-SVM预测 [J]. 高压物理学报, 2018, 32(2): 108-115.
Pan Q, Zhang J C, Xiao Q H, et al. Prediction of penetration depth of projectiles into concrete targets based on PSO-SVM [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 108-115.
|