网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
AZ31镁合金板材连续挤压数值模拟与实验研究
英文标题:Numerical simulation and experimental study on continuous extrusion of AZ31 magnesium alloy sheet
作者:李智勇 裴久杨 郭丽丽 王延辉 
单位:大连交通大学 
关键词:连续挤压 AZ31镁合金板材 微观组织 力学性能 断裂机制 
分类号:TG379
出版年,卷(期):页码:2019,44(7):15-20
摘要:

采用HyperXtrude软件,对170 mm×4 mm 的AZ31镁合金板材的连续挤压成形过程进行数值模拟,对单杆分流焊合模具结构进行了优化,并选取优化的模具结构进行连续挤压实验,得到了表面质量良好的AZ31镁合金板材。对AZ31镁合金板材进行了微观组织观察,结果表明:在截面上的微观组织分布不均,焊合区表面出现细晶带,在板材中间和边部位置出现大量孪晶,这是由于扩展成形过程中,板材截面的温度和变形程度不同所致。对板材力学性能进行了检测,得到纵向抗拉强度达到200.4 MPa,伸长率为20.8%,横向强度(焊缝强度)为170.6 MPa,伸长率为7.1%;板材纵向断口形貌表现为韧性断裂为主的断裂机制,而横向和45°方向主要表现为脆性断裂。

The continuous extrusion process of AZ31 magnesium alloy sheet (170 mm×4 mm) was simulated by finite element software HyperXtrude, and the single rod split welding die structure was optimized. Then, the continuous extrusion experiments were conducted by the optimized die structure, and the AZ31 magnesium alloy sheet with good surface quality was obtained. Furthermore, the microstructure of AZ31 magnesium alloy sheet was observed. The results show that the grain size is unevenly distributed on the cross section, the fine grain belt appears on the surface of weld zone, and a large number of twins are found in the middle and edge areas of sheet. This is due to the different temperatures and deformation degrees on the cross section of sheet during the extending forming process. Finally, the mechanical properties were tested. It is found that the longitudinal tensile strength reaches 200.4 MPa, and the elongation is 20.8%. However the transverse strength (weld strength) is 170.6 MPa, and the elongation is 7.1%. Thus, from the fracture morphologies, the fracture mechanism of the longitudinal sample is dominated by the ductile fracture, but that of the transverse and 45° direction samples are mainly brittle fracture.

基金项目:
国家自然科学基金青年基金项目(51401043);大连市科技之星项目(2017RQ139)
作者简介:
李智勇(1994-),男,硕士研究生,E-mail:lijiu94@163.com;通讯作者:裴久杨(1981-),男,博士,讲师,E-mail:peijiuyang@163.com
参考文献:

[1]Doege E, Drder K. Sheet metal forming of magnesium wrought alloys-formability and process technology[J].Journal of Materials Processing Technology, 2001, 115(1): 14-19.


[2]Dong H, Pan F, Jiang B, et al. Mechanical properties and deformation behaviors of hexagonal Mg-Li alloys[J]. Materials and Design, 2015, 65: 42-49.


[3]Suh B C, Shim M S, Shin K S, et al. Current issues in magnesium sheet alloys: Where do we go from here?[J]. Scripta Materialia, 2014, 84-85: 1-6.


[4]陈振华. 变形镁合金[M]. 北京: 化学工业出版社, 2005.


Chen Z H. Wrought Magnesium Alloys[M]. Beijing: Chemical Industry Press, 2005.


[5]郭丽丽, 符蓉, 裴久杨, . AZ31镁合金板材连续挤压工艺的实验研究[J]. 稀有金属材料与工程, 2017, 46(6): 1626-1631.


Guo L L, Fu R, Pei J Yet al. Experimental studies on AZ31 magnesium sheets processed by continuous extrusion [J]. Rare Metal Materials and Engineering, 201746(6):1626-1631.


[6]郭强, 严红革, 陈振华, . AZ31镁合金高温热压缩变形特性[J]. 中国有色金属学报, 2005, 15(6): 900-906.


Guo QYan H GChen Z Het alHot compression deformation behavior of AZ31 magnesium alloy at elevated temperature [J]The Chinese Journal of Nonferrous Metals200515(6): 900-906.


[7]宋宝韫, 樊志新, 陈吉光, . 铜、铝连续挤压技术特点及工业应用[J]. 稀有金属, 2004, 28(1): 257-261.


Song B YFan Z XChen J Get al. Features of copper and aluminum continuous extrusion process and industrial application[J]Chinese Journal of Rare Metals200428 (1): 257-261.


[8]樊志新, 陈莉, 孙海洋. 连续挤压技术的发展与应用[J]. 中国材料进展, 2013, 32(5): 276-282.


Fan Z XChen LSun H Y.Development and application of continuous extrusion technology [J]Materials China201332 (5): 276 -282.


[9]赵颖, 运新兵, 闫志勇, . 基于HyperXtrude的铝合金壁板连续挤压技术[J]. 塑性工程学报, 2017, 24(1): 79-84.


Zhao YYun X BYan Z Yet al Continuous extrusion technology of aluminum alloy panels based on HyperXtrude[J]. Journal of Plasticity Engineering201724 (1): 79 -84.


[10]王赫男, 王孟君, 乔磊. 基于HyperXtrude铝型材挤压模具设计和模拟分析[J]. 铝加工, 2014, (2): 4-8.


Wang H NWang M JQiao LAluminum extrusion die design and simulation based on HyperXtrude [J]Aluminum Fabrication2014(2): 4 -8.


[11]吴泽丽, 梁益龙, 孙皓, . 循环交叉轧制对ZK60镁合金组织和性能的影响[J]. 稀有金属, 2018, 42(9):909-917.


Wu Z L, Liang Y L, Sun H, et al. Microstructure and properties of ZK60 magnesium alloy with circle cross rolling [J] Chinese Journal of Rare Metals, 2018, 42(9):909-917.


[12]胡红军. 高性能镁合金挤压剪切制备技术[M].北京: 科学出版社, 2016.


Hu H J. Extrusion Shearing Technology for High Performance Magnesium Alloys [M]. Beijing: Science Press, 2016.


[13]任政, 张兴国, 庞磊, . 多向锻造对变形镁合金AZ31组织和力学性能的影响[J]. 塑性工程学报, 2009, 16(6): 23-27,38.


Ren Z, Zhang X G, Pang L, et al. Effect of multiple forging process on microstructure and mechanical properties of wrought magnesium alloy AZ31[J]. Journal of Plasticity Engineering, 2009, 16(6): 23-27,38.


[14]李瑞红, 蒋斌, 陈志军, . 超轻Mg-Li-Al系变形镁合金挤压板材的组织及性能[J]. 中国有色金属学报, 2016, 26(1): 31-36.


Li R HJiang BChen Z Jet al Microstructure and mechanical properties of as-extruded ultra-light Mg-Li-Al sheet [J]The Chinese Journal of Nonferrous Metals201626 (1): 31-36.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9