网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
初始组织对Al-Cu-Mg-Zr合金热变形流变应力行为的影响
英文标题:Influence of initial microstructures on rheology stress behavior during hot deformation for Al-Cu-Mg-Zr alloy
作者:董兆宇 柏国伟 傅定发 
单位:湖南大学 
关键词:Al-Cu-Mg-Zr合金 热压缩 流变应力 本构方程 动态软化率 
分类号:TG146.21
出版年,卷(期):页码:2019,44(7):150-158
摘要:

结合工业生产,对Al-Cu-Mg-Zr合金进行了空冷、水淬和炉冷3种典型的热处理,以得到不同的初始组织。然后对不同初始组织的合金进行等温热压缩实验,实验温度为300~450 ℃,应变速率为0.01~10 s-1。结果发现:流变应力随着应变量的增加迅速达到峰值随后软化,最后应力趋于平稳;在3种不同热处理方式中,水淬的峰值应力和动态软化率最大,炉冷的峰值应力和动态软化率最小。通过构建双曲正弦模型,很好地描述了合金流变应力行为。空冷、水淬和炉冷的变形激活能Q值分别为180.45,298.92和161.45 kJ·mol-1。

Combining industrial production, the heat treatment of Al-Cu-Mg-Zr alloy was carried out by air cooling, water quenching and furnace cooling to obtain different initial microstructures. Then, the isothermal hot compression experiments were performed on alloys with different initial microstructures under the deformation temperature of 300-450 ℃ and the strain rate of 0.01-10 s-1. The results show that the rheology stress rapidly reaches peak value and then softens into steady with the increasing of strain. In the three different heat treatment methods, the peak stress and dynamic softening rate of water quenching are the largest, and that of furnace cooling are the smallest. The rheology stress behavior of alloy can be described well by the hyperbolic sine equation, and the deformation activation energies of alloy under air cooling, water quenching and furnace cooling are 180.45, 298.92 and 161.45 kJ·mol-1, respectively. 

基金项目:
国家自然科学基金资助项目(51674111)
作者简介:
董兆宇(1993-),男,硕士研究生,E-mail:1119144306@qq.com;通讯作者:傅定发(1969-),男,博士,副教授,E-mail:hunu_fudingfa@163.com
参考文献:

[1]Pantelakis S GAlexopoulos N D. Assessment of the ability of conventional and advanced wrought aluminum alloys for mechanical performance in light-weight applications [J]. Materials & Design2008291):80-91.


[2]Dursun TSoutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design2014, 564):862-871.


[3]左龙,汤杰,张辉.Zn含量对Al-Zn-Mg-Cu合金热变形流变应力行为的影响[J]. 锻压技术,2018435):120-125.


Zuo LTang JZhang H. Influence of Zn content on flow stress behavior in the hot deformation for Al-Zn-Mg-Cu alloys [J]. Forging & Stamping Technology2018435):120-125.


[4]Cepeda-Jiménez C MRuano O ACarsí Met al. Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization[J]. Materials Science & Engineering A20125529):530-539.


[5]Banerjee SRobi P SSrinivasan Aet al. High temperature deformation behavior of Al-Cu-Mg alloys micro-alloyed with Sn[J]. Materials Science and Engineering A201052710):2498-2503.


[6]Li YLiu ZLin Let al. Deformation behavior of an Al-Cu-Mg-Mn-Zr alloy during hot compression[J]. Journal of Materials Science20114611):3708-3715.


[7]吴文祥,韩逸,钟皓,等. 2026铝合金热压缩变形流变应力行为[J]. 中国有色金属学报,2009198):1403-1408.


Wu W XHan YZhong Het al. Flow stress behavior of 2026 aluminum alloy during hot compression deformation[J]. The Chinese Journal of Nonferrous Metals2009198):1403-1408.


[8]Huang X DZhang HHan Yet al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature[J]. Materials Science and Engineering A20105273):485-490.


[9]Verlinden BWouters PMcQueen H Jet al. Effect of different homogenization treatments on the hot workability of aluminium alloy AA2024[J]. Materials Science and Engineering A19901232):229-237.


[10]Gavgali MAksakal B. Effects of various homogenisation treatments on the hot workability of ingot aluminium alloy AA2014[J]. Materials Science and Engineering A19982541):189-199.


[11]Ebrahimi G RZarei-Hanzaki AHaghshenas Met al. The effect of heat treatment on hot deformation behaviour of Al 2024[J]. Journal of Materials Processing Technology20082061):25-29.


[12]Totik YGavgali M. The effect of homogenization treatment on the hot workability between the surface and the center of AA2014 ingots[J]. Materials Characterization2002493):261-268.


[13]Ebrahimi G REzatpour H R. Effect of precipitation on the warm deformation behavior of AA2024 alloy[J]. Materials Science and Engineering A201768110-17.


[14]黄旭东. 2026铝合金热变形行为研究[D]. 长沙:湖南大学,2009.


Huang X D. Hot Deformation Behavior of 2026 Aluminum Alloy at Elevated Temperature [D]. ChangshaHunan University2009.


[15]Zhang X MSong MZhou Z Pet al. Microstructures and mechanical properties of 2014 aluminium alloy forgings made by a new process [J]. Transactions of Nonferrous Metals Society of China2000102):139-143.


[16]蒋福林. Al-Zn-Mg-Cu合金热/力作用下的静态软化:物理模拟与模型[D]. 长沙:湖南大学,2015.


Jiang F L. Static Softening of Al-Zn-Mg-Cu Alloy Following Thermal/Mechanical Processing: Physical Simulation and Modeling[D]. ChangshaHunan University, 2015.


[17]Jiang FZhang H. Non-isothermal precipitation kinetics and its effect on hot working behaviors of an Al-Zn-Mg-Cu alloy[J]. Journal of Materials Science2018534):2830-2843.


[18]陈容. 2026铝合金热变形过程中动态组织演变规律研究[D].长沙:湖南大学,2011.


Chen R. Research on Dynamic Microstructure Evolution of 2026 Aluminum Alloy during Hot Deformation[D]. ChangshaHunan University2011.


[19]Sellars C MMcTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica1966149):1136-1138.


[20]张辉,陈容,黄旭东,等. 2026铝合金热变形及热处理过程中的微观组织演变[J]. 中国有色金属学报:英文版,2011215):955-961.


Zhang HChen RHuang X Det al. Microstructural evolution of 2026 aluminum alloy during hot compression and subsequent heat treatment [J]. Transactions of Nonferrous Metals Society of China2011215):955-961.


[21]黄旭东,杨红,张辉,等. 2026铝合金热压缩变形流变行为研究[J]. 热加工工艺,20093814):20-24.


Huang X DYang HZhang Het al. Flow behavior of 2026 aluminum alloy during hot compression deformation [J].Thermal Processing Technology20093814):20-24.


[22]Zener CHollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics1944151):22-32.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9