[1]Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55: 1-16.
[2]陈玉勇, 孔凡涛. TiAl基合金新材料研究及精密成形[J]. 金属学报, 2002, 38(11): 1141-1148.
Chen Y Y, Kong F T. Reserch on TiAl based alloys materials and precision forming [J]. Acta Metallurgica Sinica, 2002, 38(11): 1141-1148.
[3]Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced Engineering Materials, 2013, 15(4): 191-215.
[4]Kong F T, Cui N, Chen Y Y,et al. A novel composition design method for beta-gamma TiAl alloys with excellent hot workability[J]. Metallurgical and Materials Transactions A, 2018, 49A: 5574-5584.
[5]Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology[M]. Wiley, Hoboken, NJ, 2011.
[6]Clemens H, Kestler H. Processing and applications of intermetallic TiAl-based alloys[J]. Advanced Engineering Materials, 2000, 2: 551-570.
[7]张宇,王晓鹏,孔凡涛,等. 合金成分对TiAl合金热变形加工影响的研究进展[J]. 稀有金属材料与工程, 2017, 46(11):3570-3576.
Zhang Y, Wang X P, Kong F T, et al. Effects of alloying additions on hot deformation processing of TiAl alloys[J]. Rare Metal Materials and Engineering, 2017, 46(11):3570-3576.
[8]杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2): 129-147.
Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 51(2): 129-147.
[9]朱海峰. 挤压态TiAl合金的组织性能及高温变形行为[D]. 哈尔滨:哈尔滨工业大学,2018.
Zhu H F. The Microstructure, Mechanical Properties and Hot Deformation Behavior of As-extruded TiAl Alloys[D]. Harbin: Harbin Institute of Technology, 2018.
[10]周海涛. Ti-44Al-8Nb-0.2W-0.2B-Y合金板材的轧制及组织性能[D]. 哈尔滨:哈尔滨工业大学,2017.
Zhou H T. Rolling, Microstructure and Mechanical Properties of Ti-44Al-8Nb-0.2W-0.2B-Y Alloy Sheet[D]. Harbin: Harbin Institute of Technology, 2017.
[11]彭超. 生物医用β型Ti-12Mo-3Nb-1.5Cu合金高温变形行为及组织性能研究[D]. 哈尔滨:哈尔滨工业大学,2018.
Peng C. High Temperature Deformation Behavior and Microstructure and Properties of Biomedical Beta Ti-12Mo-3Nb-1.5Cu Alloy[D]. Harbin: Harbin Institute of Technology, 2018.
[12]孔凡涛,张树志,陈玉勇. Ti-46Al-2Cr-4Nb-Y合金的高温变形及加工图[J]. 中国有色金属学报, 2010,20(S1):233-236.
Kong F T, Zhang S Z, Chen Y Y. Hot deformation and processing map of Ti-46Al-2Cr-4Nb-Y Alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1):233-236.
[13]俞年年,项金钟, 郑文杰. Monel K-500合金的热变形行为及热加工图[J]. 热加工工艺, 2018, 47(7):172-180.
Yu N N, Xiang J Z, Zheng W J. Hot dformation behavior and hot processing map of monel K-500 alloy[J]. Hot Working Technology, 2018, 47(7):172-180.
[14]沈博. 2397铝锂合金热变形行为与微观组织演化研究[D]. 武汉:华中科技大学,2018.
Shen B. Study on Hot Deformation Behavior and Microstructure Evolution of 2397 Al-Li Alloy[D]. Wuhan: Huazhong University of Science & Technology, 2018.
[15]Kong F T, Cui N, Chen Y Y, et al. Characterization of hot deformation behavior of as-forged TiAl alloy[J]. Intermetallics, 2014, 55: 66-72.
[16]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15: 1883-1892.
[17]Zhou H T, Kong F T, Wang X P, et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W, B, Y)alloy with nearly lamellar microstructure[J]. Intermetallics, 2017, 81:62-72.
[18]Prasad Y V R K, Rao K P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950 ℃[J]. Materials Science and Engineering A, 2005, 391: 141-150.
|