网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
挤压态Ti-46Al-(V,Cr,Ni)合金的高温变形行为
英文标题:Hot deformation behavior of extruded Ti-46Al-(V,Cr,Ni) alloy
作者:关红 朱海峰 孔凡涛 邰清安 王晓鹏 陈玉勇 
单位:中国航发沈阳黎明航空发动机有限责任公司 哈尔滨工业大学 
关键词:TiAl合金 挤压 热变形行为 组织演变 热加工图 变形温度 
分类号:TG146.2
出版年,卷(期):页码:2019,44(7):158-164
摘要:

采用热/力物理模拟的方法,分析了挤压态Ti-46Al-(V,Cr,Ni)合金的热变形行为及组织演变,获得了热加工窗口,并根据计算分析得到的能量耗散效率和失稳判据,建立了挤压态Ti-46Al-(V,Cr,Ni)合金的热加工图。随着热变形温度的升高,合金组织中再结晶γ晶粒尺寸逐渐增加,γ晶粒的体积分数先增加后减少,而α2/γ层片晶团的体积分数与γ晶粒呈相反的趋势。过低或过高的变形温度均会对变形组织均匀性产生不利影响。综合考虑热加工窗口、热加工图、合金组织的研究结果,确定挤压态Ti-46Al-(V,Cr,Ni)合金的最佳热变形工艺条件为(1160~1220 ℃)/(0.004~0.02 s-1)。
 

The hot deformation behavior and microstructural evolution of the extruded Ti-46Al-(V,Cr,Ni) alloy were investigated by the thermal/force physics simulation method, and the hot working window was obtained. Based on the energy dissipation efficiency obtained by the calculation analysis and the instability criterion, the hot working diagram of the extruded Ti-46Al-(V,Cr,Ni) alloy was established. Then, with the increasing of hot deformation temperature, the recrystallization γ grain size increases, and the volume fraction of γ grain increases first and then decreases, but the volume fraction of α2/γ lamellar colonies is opposite to that of γ grains. Therefore, the lower or higher deformation temperature adversely affects the uniformity of deformed microstructure. Comprehensive consideration of the research results of hot processing window, hot working diagram and alloy structures, the best hot deformation conditions of the extruded Ti-46Al-(V,Cr,Ni) alloy are (1160-1220 ℃) and (0.004-0.02 s-1), respectively.

基金项目:
国家自然科学基金资助项目(51471056)
作者简介:
关红(1968-),女,学士,高级工程师,E-mail:1277479262@qq.com;通讯作者:孔凡涛(1971-),男,博士,教授,E-mail:kft@hit.edu.cn
参考文献:

[1]Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55: 1-16.


[2]陈玉勇, 孔凡涛. TiAl基合金新材料研究及精密成形[J]. 金属学报, 2002, 38(11): 1141-1148.


Chen Y Y, Kong F T. Reserch on TiAl based alloys materials and precision forming [J]. Acta Metallurgica Sinica, 2002, 38(11): 1141-1148.


[3]Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced Engineering Materials, 2013, 15(4): 191-215.


[4]Kong F T, Cui N, Chen Y Y,et al. A novel composition design method for beta-gamma TiAl alloys with excellent hot workability[J]. Metallurgical and Materials Transactions A, 2018, 49A: 5574-5584.


[5]Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology[M]. Wiley, Hoboken, NJ, 2011.


[6]Clemens H, Kestler H. Processing and applications of intermetallic TiAl-based alloys[J]. Advanced Engineering Materials, 2000, 2: 551-570.


[7]张宇,王晓鹏,孔凡涛,等. 合金成分对TiAl合金热变形加工影响的研究进展[J]. 稀有金属材料与工程, 2017, 46(11):3570-3576.


Zhang Y, Wang X P, Kong F T, et al. Effects of alloying additions on hot deformation processing of TiAl alloys[J]. Rare Metal Materials and Engineering, 2017, 46(11):3570-3576.


[8]杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2): 129-147.


Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 51(2): 129-147.


[9]朱海峰. 挤压态TiAl合金的组织性能及高温变形行为[D]. 哈尔滨:哈尔滨工业大学,2018.


Zhu H F. The Microstructure, Mechanical Properties and Hot Deformation Behavior of As-extruded TiAl Alloys[D]. Harbin: Harbin Institute of Technology, 2018.


[10]周海涛. Ti-44Al-8Nb-0.2W-0.2B-Y合金板材的轧制及组织性能[D]. 哈尔滨:哈尔滨工业大学,2017.


Zhou H T. Rolling, Microstructure and Mechanical Properties of Ti-44Al-8Nb-0.2W-0.2B-Y Alloy Sheet[D]. Harbin: Harbin Institute of Technology, 2017.


[11]彭超. 生物医用βTi-12Mo-3Nb-1.5Cu合金高温变形行为及组织性能研究[D]. 哈尔滨:哈尔滨工业大学,2018.


Peng C. High Temperature Deformation Behavior and Microstructure and Properties of Biomedical Beta Ti-12Mo-3Nb-1.5Cu Alloy[D]. Harbin: Harbin Institute of Technology, 2018.


[12]孔凡涛,张树志,陈玉勇. Ti-46Al-2Cr-4Nb-Y合金的高温变形及加工图[J]. 中国有色金属学报, 2010,20(S1):233-236.


Kong F T, Zhang S Z, Chen Y Y. Hot deformation and processing map of Ti-46Al-2Cr-4Nb-Y Alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1):233-236.


[13]俞年年,项金钟, 郑文杰. Monel K-500合金的热变形行为及热加工图[J]. 热加工工艺, 2018, 47(7):172-180.


Yu N N, Xiang J Z, Zheng W J. Hot dformation behavior and hot processing map of monel K-500 alloy[J]. Hot Working Technology, 2018, 47(7):172-180.


[14]沈博. 2397铝锂合金热变形行为与微观组织演化研究[D]. 武汉:华中科技大学,2018.


Shen B. Study on Hot Deformation Behavior and Microstructure Evolution of 2397 Al-Li Alloy[D]. Wuhan: Huazhong University of Science & Technology, 2018.


[15]Kong F T, Cui N, Chen Y Y, et al. Characterization of hot deformation behavior of as-forged TiAl alloy[J]. Intermetallics, 2014, 55: 66-72.


[16]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15: 1883-1892.


[17]Zhou H T, Kong F T, Wang X P, et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W, B, Y)alloy with nearly lamellar microstructure[J]. Intermetallics, 2017, 81:62-72.


[18]Prasad Y V R K, Rao K P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950 [J]. Materials Science and Engineering A, 2005, 391: 141-150.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9