[1]李慎兰, 黄志其, 蒋福利, 等. 固溶温度对6061铝合金组织和性能的影响[J].材料热处理学报, 2013, 34(5): 131-136.
Li S L, Huang Z Q, Jiang F L, et al. Effect of solution temperature on microstructure and property of a 6061 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(5): 131-136.
[2]潘道召, 王芝秀, 李海, 等. 双级时效对6061铝合金拉伸性能和晶间腐蚀性能的影响[J]. 中国有色金属学报, 2010, 20(3): 435-441.
Pan D Z, Wang Z X, Li H, et al. Effects of two-step ageing treatment on tensile properties and intergranular corrosion of 6061 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 435-441.
[3]韩云, 刘维洲, 张旭东, 等. 固溶和时效处理对6061铝合金轮毂力学性能的影响[J]. 热加工工艺, 2018, 47(20): 228-232.
Han Y, Liu W Z, Zhang X D, et al. Effects of solid solution and aging treatment on mechanical properties of 6061 aluminum alloy wheel hub[J]. Hot Working Technology, 2018, 47(20): 228-232.
[4]Mansourinejad M, Mirzakhani B. Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2072-2079.
[5]黄元春, 颜徐宇, 肖政兵, 等. AA6061铝合金冷轧过程中织构的演变与断裂机制[J]. 粉末冶金材料科学与工程, 2015, 20(6): 822-828.
Huang Y C, Yan X Y, Xiao Z B, et al. Texture evolution and fracture mechanism of cold rolled AA6061 alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(6): 822-828.
[6]陈剑虹, 李明娥, 余江瑞, 等. 热处理工艺对6061铝合金显微组织及力学性能的影响[J]. 兰州理工大学学报, 2010, 36(2): 15-17.
Chen J H, Li M E, Yu J R, et al. Influence of heat treatment on microstructure and mechanical properties of 6061 aluminum alloy[J]. Journal of Lanzhou University of Technology, 2010, 36(2): 15-17.
[7]李海, 毛庆忠, 王芝秀, 等. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报,2014, 50(10): 1244-1252.
Li H, Mao Q Z, Wang Z X, et al. Effect of the thermo-mechanical treatment of pre-ageing, cold-rolling and re-ageing on microstructures and mechanical properties of 6061 Al alloy[J]. Acta Metallurgica Sinica, 2014, 50(10): 1244-1252.
[8]顾媛. Al-Mg-Si-Cu合金的变形时效工艺研究[D]. 长沙: 湖南大学, 2012.
Gu Y. A Study on the Deformation and Aging Process in Al-Mg-Si-Cu Alloys[D]. Changsha: Hunan University, 2012.
[9]陈敬, 陈江华, 刘春辉, 等. 通过形变时效工艺同时提高Al-Mg-Si-Cu合金强度和电导率[J]. 功能材料, 2016, 47 (2): 2139-2142, 2147.
Chen J, Chen J H, Liu C H, et al. Simultaneously improving strength and electrical conductivity in Al-Mg-Si-Cu alloy by combined deformation and aging[J]. Journal of functional materials, 2016, 47 (2): 2139-2142, 2147.
[10]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[11]GB/T 4340.1—2009,金属材料维氏硬度试验第1部分:试验方法[S].
GB/T 4340.1—2009, Metallic materials—Vickers hardness test—Part 1: Test method[S].
[12]姜延飞, 武建军. 形变和时效处理对铝合金组织及性能的影响[J]. 热加工工艺, 2005, 34(12): 50-51.
Jiang Y F, Wu J J. Effect of deformation and aging on microstructure and properties of aluminium alloy[J]. Hot Working Technology, 2005, 34(12): 50-51.
[13]李冲. 铝合金中Mg2Si相演变行为及析出长大机制的研究[D]. 济南: 山东大学, 2012.
Li C. Study on the Evolution, Precipitation and Growth Mechanism of Mg2Si in Al Alloys[D]. Jinan: Shandong University, 2012.
[14]李世平. 人工时效制度对6063铝合金型材质量的影响[J]. 轻合金加工技术, 1999, 27(9): 25-28.
Li S P. Effect of artificial aging specification on quality of 6063 aluminium alloy profile[J]. Light Alloy Fabrication Technology, 1999, 27(9): 25-28.
|