网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
变形时效对6061铝合金板材的组织和力学性能的影响
英文标题:Influence of deformation aging on microstructure and mechanical properties of 6061 aluminum alloy plate
作者:唐健江 王嘉 刘嘉乐 吕琪 于方丽 李天麒 张海鸿 
单位:西安航空学院 
关键词:6061铝合金  变形时效  硬度 抗拉强度 伸长率 
分类号:TG335
出版年,卷(期):页码:2019,44(7):165-169
摘要:

通过对6061铝合金轧制态板材变形时效工艺的研究,对比分析了其组织结构、硬度、抗拉强度和伸长率的变化规律。结果表明:时效前后,6061铝合金的组织均为纤维状,主要为Al基体相和Mg2Si强化相。随着时效温度升高,Mg2Si强化相在纤维状结构间逐渐析出和长大,在190 ℃/1 h时效工艺下,晶粒尺寸最大。时效前的6061铝合金存在加工硬化现象,其硬度、抗拉强度和伸长率分别为66.8 HV、234 MPa和12%。变形时效使6061铝合金的塑性增大,合金的力学性能随时效温度升高而呈现先增大后降低的趋势,其在180 ℃时效1 h时达到峰值,硬度、抗拉强度和伸长率分别为66.4 HV、279 MPa和16.8%。

The microstructure, hardness, tensile strength and elongation of rolling plate for 6061 aluminum alloy were compared and analyzed by studying the deformation and aging process. The results indicate that before and after aging, the microstructure of 6061 aluminum alloy is fibrous mainly composed of Al matrix phase and Mg2Si strengthening phase. With the increasing of aging temperature, the Mg2Si strengthening phase gradually precipitates and grows up between the fibrous structures, while the grain size is the largest under 190 ℃/1 h aging process. Furthermore, there is work hardening in the 6061 aluminum alloy before aging, and the hardness, tensile strength and elongation of alloy are 66.8 HV, 234 MPa and 12%, respectively. The deformation aging increases the plasticity of alloy, and the mechanical properties of alloy increase first and then decrease with the increasing of aging temperature. Under 180 ℃/1 h aging process, the hardness, tensile strength and elongation of 6061 aluminum alloy reaches the peak values of 66.4 HV, 279 MPa and 16.8%, respectively.

基金项目:
陕西省教育厅科学研究项目(18JK0409); 西安航空学院校级科研基金项目(2017KY0102)
作者简介:
唐健江(1984-),男,博士,工程师,E-mail:Tangjianjiang@xaau.edu.cn
参考文献:

[1]李慎兰, 黄志其, 蒋福利, . 固溶温度对6061铝合金组织和性能的影响[J].材料热处理学报, 2013, 34(5): 131-136.


Li S L, Huang Z Q, Jiang F L, et al. Effect of solution temperature on microstructure and property of a 6061 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(5): 131-136.


[2]潘道召, 王芝秀, 李海, . 双级时效对6061铝合金拉伸性能和晶间腐蚀性能的影响[J]. 中国有色金属学报, 2010, 20(3): 435-441.


Pan D Z, Wang Z X, Li H, et al. Effects of two-step ageing treatment on tensile properties and intergranular corrosion of 6061 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 435-441.


[3]韩云, 刘维洲, 张旭东, . 固溶和时效处理对6061铝合金轮毂力学性能的影响[J]. 热加工工艺, 2018, 47(20): 228-232.


Han Y, Liu W Z, Zhang X D, et al. Effects of solid solution and aging treatment on mechanical properties of 6061 aluminum alloy wheel hub[J]. Hot Working Technology, 2018, 47(20): 228-232.


[4]Mansourinejad M, Mirzakhani B. Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2072-2079.


[5]黄元春, 颜徐宇, 肖政兵, . AA6061铝合金冷轧过程中织构的演变与断裂机制[J]. 粉末冶金材料科学与工程, 2015, 20(6): 822-828.


Huang Y C, Yan X Y, Xiao Z B, et al. Texture evolution and fracture mechanism of cold rolled AA6061 alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(6): 822-828.


[6]陈剑虹, 李明娥, 余江瑞, . 热处理工艺对6061铝合金显微组织及力学性能的影响[J]. 兰州理工大学学报, 2010, 36(2): 15-17.


Chen J H, Li M E, Yu J R, et al. Influence of heat treatment on microstructure and mechanical properties of 6061 aluminum alloy[J]. Journal of Lanzhou University of Technology, 2010, 36(2): 15-17.


[7]李海, 毛庆忠, 王芝秀, . 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报,2014, 50(10): 1244-1252.


Li H, Mao Q Z, Wang Z X, et al. Effect of the thermo-mechanical treatment of pre-ageing, cold-rolling and re-ageing on microstructures and mechanical properties of 6061 Al alloy[J]. Acta Metallurgica Sinica, 2014, 50(10): 1244-1252.


[8]顾媛. Al-Mg-Si-Cu合金的变形时效工艺研究[D]. 长沙: 湖南大学, 2012.


Gu Y. A Study on the Deformation and Aging Process in Al-Mg-Si-Cu Alloys[D]. Changsha: Hunan University, 2012.


[9]陈敬, 陈江华, 刘春辉, . 通过形变时效工艺同时提高Al-Mg-Si-Cu合金强度和电导率[J]. 功能材料, 2016, 47 (2): 2139-2142, 2147.


Chen J, Chen J H, Liu C H, et al. Simultaneously improving strength and electrical conductivity in Al-Mg-Si-Cu alloy by combined deformation and aging[J]. Journal of functional materials, 2016, 47 (2): 2139-2142, 2147.


[10]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].


[11]GB/T 4340.1—2009,金属材料维氏硬度试验第1部分:试验方法[S].


GB/T 4340.1—2009, Metallic materials—Vickers hardness test—Part 1: Test method[S].


[12]姜延飞, 武建军. 形变和时效处理对铝合金组织及性能的影响[J]. 热加工工艺, 2005, 3412: 50-51.


Jiang Y F, Wu J J. Effect of deformation and aging on microstructure and properties of aluminium alloy[J]. Hot Working Technology, 2005, 3412: 50-51.


[13]李冲. 铝合金中Mg2Si相演变行为及析出长大机制的研究[D]. 济南: 山东大学, 2012.


Li C. Study on the Evolution, Precipitation and Growth Mechanism of Mg2Si in Al Alloys[D]. Jinan: Shandong University, 2012.


[14]李世平. 人工时效制度对6063铝合金型材质量的影响[J]. 轻合金加工技术, 1999, 27(9): 25-28.


Li S P. Effect of artificial aging specification on quality of 6063 aluminium alloy profile[J]. Light Alloy Fabrication Technology, 1999, 27(9): 25-28.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9