[1]Van Hall S N, Findley K O, Freis A K. Improved selfpierce rivet performance through intentional decarburization[J]. Journal of Materials Processing Technology, 2018, 251: 350-359.
[2]杜国栋, 邢彦锋, 金光灿, 等. 铝钢薄板多铆钉连接变形分析及工艺优化[J]. 热加工工艺, 2018, 47(21): 183-186.
Du G D, Xing Y F, Jin G C, et al. Deformation analysis and process optimization of multirivet connection in aluminum steel sheet[J]. Hot Working Technology, 2018, 47(21): 183-186.
[3]丁文有, 何晓聪, 邢保英,等. 铆向组合对双铆钉自冲铆接头力学性能的影响[J]. 塑性工程学报, 2018, 25(5): 234-239.
Ding W Y, He X C, Xing B Y, et al. Effect of riveting orientation combination on mechanical properties of double rivet selfpiercing riveted joint [J]. Journal of Plasticity Engineering, 2018, 25(5): 234-239.
[4]吴小丹, 王敏, 孔谅, 等. 铆速对SPR自冲铆接接头成形性能的影响[J]. 机械设计与制造, 2017, 2(2): 210-212.
Wu X D, Wang M, Kong L, et al. Influence of punch velocity on formability of selfpiercing riveted joints[J]. Machinery Design & Manufacture, 2017, 2(2): 210-212.
[5]Huang L, Guo H, Shi Y, et al. Fatigue behavior and modeling of selfpiercing riveted joints in aluminum alloy 6111[J]. International Journal of Fatigue, 2017, 100: 274-284.
[6]张学奇, 董万鹏. 半空心铆钉自冲铆接的研究进展[J]. 热加工工艺, 2016, 45(9):5-8.
Zhang X Q, Dong W P. Study on selfpiercing riveting of semihollow rivet[J]. Hot Working Technology, 2016, 45(9): 5-8.
[7]张永强, 伊日贵, 付参, 等. 钢铝自冲铆接工艺过程仿真与实验研究[J]. 电焊机, 2018, 48(10): 26-29.
Zhang Y Q, Yi R G, Fu C, et al. Simulation and experiments on self piercing riveting process of steel and aluminum[J]. Electric Welding Machine, 2018, 48(10): 26-29.
[8]张良. 基于BP神经网络的预切冲裁断面质量的仿真预测[J]. 锻压技术, 2018, 43(12): 175-179.
Zhang L. Simulation and prediction of cross section quality for precut blanking based on BP neural network[J]. Forging & Stamping Technology, 2018, 43(12): 175-179.
[9]GB/T 228.1—2010, 金属材料 拉伸试验 第1部分:室温试验方法[S].
GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].
[10]甘守武, 陈志军, 赵磊娜. 基于单隐藏层 BP 神经网络Ti55531 合金流变应力预测模型的建立[J]. 热加工工艺, 2018,47(11):59-61.
Gan S W, Chen Z J, Zhao L N. Construction of flow stress prediction model for Ti55531 alloy based on BP neural network with single hidden layer[J]. Hot Working Technology, 2018, 47(11):59-61.
[11]林伟路, 丁小凤, 双远华. BP神经网络对斜轧穿孔轧制力的预测[J]. 锻压技术, 2018,43(10):175-178.
Lin W L, Ding X F, Shuang Y H. Prediction on rolling force of oblique rolling piercing based on BP neural network[J]. Forging & Stamping Technology, 2018, 43(10):175-178.
[12]张涛, 樊文欣, 郭代峰, 等. 基于BP神经网络的温挤压模具磨损量预测[J]. 锻压技术, 2017, 42(2): 178-182.
Zhang T, Fan W X, Guo D F, et al. Prediction on wear loss of warm extrusion die based on BP neural network[J]. Forging & Stamping Technology, 2017, 42(2): 178-182.
|